$ TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Information Technology

ANTTI HYRKKANEN

General Purpose SUT Adapter for TTCN-3

MASTER OF SCIENCE THESIS

Subject approved by the Department Council on
09.06.2004

Examiners: Prof. Jarmo Harju (TUT)

Sr. Researcher Mika Katara (TUT)

PREFACE

This Master of Science Thesis was done for Plenware Group and Netderks during
the period Fall 2003 — Spring 2005. | would like to thank my supervisors amairex's
Jarmo Harju and Mika Katara for showing interest on this thesi& and for pointing
out errors in the text. Without the support of the following personsT&@NF3 and tool
related matters this thesis work would not have been possibleidee@egler, Stephan

Schulz, Stephan Tobies, Thomas Deiss, and Vesa-Matti Puro.

I would also like to thank Plenware Group and Nokia Networks for fingrihis work,
and the following companies for providing evaluation versions of fRieEN-3 tools:
OpenTTCN Oy, Telelogic Finland Oy, Testing Technologies IST Grdoidl Danet
Group.

| am very grateful to Tiina for showing extreme patience—most of the time

Tampere, June 8th, 2005

Antti Hyrkkanen
Luhtaankatu 15 C 17
33560 Tampere
Finland

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY

Department of Information Technology

Institute of Communications Engineering

HYRKKANEN, ANTTI: General Purpose SUT Adapter for TTCN-3
Master of Science Thesis, 102 pages, 45 enclosure pages.
Examiners: Prof. Jarmo Harju, Sr. Researcher Mika Katara
Financier: Plenware Group Oy, Nokia Networks

June 2005

Keywords: TTCN-3, Testing, System Under Test (SUT), Adaptation, SUT Adapt
Connection Management

TTCN-3 Core Language is a programming language designed fafyspgdbstract
Test Suites (ATS), which are collections of abstract tesésalhese can be used for
various kinds of testing (e.g. module, integration, conformance) of ghéatget, System
Under Test (SUT). The communication between the test casekeaSiJT is handled by
an entity called SUT Adapter. The testing can be messagd-baseprocedure-based,
thus the SUT Adapter has to realize both kinds of communication with the SUT.

Because TTCN-3 Core Language is a rather new languagecfied in 2000 by ETSI),
the present amount of literature on it is very limited. The adailbterature consists of
the TTCN-3 standard, and of overview articles and papers whijté¢he people involved
in the development of the language and TTCN-3 tools. The languadeisteeit very
difficult to learn by examples to be able to write simpl¢ tases. To be able to write an
own SUT Adapter, one needs to have a deeper understanding whaibtegosdo with
the language, how to use it and when, and how the execution of tesiscasen by the
SUT Adapter. In practise, this means that one has to studyhgedlifferent parts of the
TTCN-3 standard.

One purpose of this thesis work is to give the reader an overviehe of tCN-3 Core
Language, and what entities and standardized interfaces st TCN-3 test system.
The presentation of these topics is based on different parts GfTiG&l-3 standard,
putting emphasis on the topics involved in SUT Adapter design. The nggdse
information is then used as the basis for a new concept called Gonnbtanager
System, which is specified in this thesis work. It is an addpamework, which can be
used to design such an adapter for TTCN-3 that provides seveiekuifkinds of
message- and procedure-based communication means with the SUT. ffEhentdi
communication means can be controlled from the test cases in awumgy, and new
means can be later added without breaking the existing systensp&biication of the
Connection Manager System should give ideas to the reader whatrditengs need to
be considered in SUT Adapter design.

THVISTELMA

TAMPEREEN TEKNILLINEN YLIOPISTO

Tietotekniikan osasto

Tietoliikennetekniikka

HYRKKANEN, ANTTI: General Purpose SUT Adapter for TTCN-3
Diplomityd, 102 s., 45 liites.

Tarkastajat: prof. Jarmo Harju, vanh. tutkija Mika Katara
Rahoittaja: Plenware Group Oy, Nokia Networks

Kesakuu 2005

Avainsanat: TTCN-3, Testaus, Testikohdejarjestelmé, Adaptaatiokdledéadapteri,
Yhteydenhallinta

TTCN-3 Core Language on ohjelmointikieli, joka on suunniteltu maket@an
abstrakteja testisarjoja, jotka puolestaan koostuvat abstrakiessitapauksista. Naiden
avulla testikohdejarjestelmalle (System Under Test, SUT) voidehda esimerkiksi
moduli-, integrointi- tai vastaavuustestausta. Testikohdejarjesteljméatestitapausten
valisen kommunikoinnin mahdollistaa ohjelma nimeltd testikohdeadapteriT (SU
Adapter). Sen tulee pystyd toteuttamaan seka sanomapohjaistaosgduuripohjaista
viestintaa testikohteen kanssa, koska kommunikointi voi perustua molempiin naista.

Koska TTCN-3 Core Language on melko uusi ohjelmointikieli (ETSI:n vud&0@0
julkaisema), siitd on hyvin vahan Kkirjallisuutta saatavilla. Oksaaoleva kirjallisuus
koostuu l&hinna TTCN-3-standardista ja kielen seka siihen liittyvigikalujen
kehittamiseen osallistuneiden ihmisten Kkirjoittamista artikkigeig kayttdohjeista.
Yksinkertaisia testitapauksia on kuitenkin mahdollista oppia kirjodin esimerkkien
avulla, koska kieli itsessddn ei ole kovin vaikea. Testikohdeadapteuimittelu ja
toteutus sen sijaan vaatii kielen ominaisuuksien syvéllisempéaéanusti miten kielta
kannattaa kayttaa eri tilanteissa ja miten testikohdeadaptiteen testitapausten
suorituksen.

Taman diplomityon yhtena tarkoituksena on antaa lukijalle yleiskuva T3-®idlesta
sekd TTCN-3-testijarjestelméaéan liittyvista komponenteista mden valisista
rajapinnoista. Naiden asioiden esitys perustuu TTCN-3-standardigii@rja se keskittyy
testikohdeadapterin kannalta oleellisiin tekijoihin. Taman taeskati pohjalta tydssa
esitetddn uusi kasite yhteydenhallintajarjestelma (Connectiomadéa System).
Yhteydenhallintajarjestelman tarkoituksena on tarjota runko testikohutesitia, joka
tarjoaa useita erilaisia sanoma- ja proseduuripohjaisia kommunkendja
kaytettavaksi testikohdejarjestelman kanssa. Naitd erilal@aamunikointikeinoja
hallitaan testitapauksista yhtenaisella tavalla ja niitdaan lisatd myéhemmin adapteriin
muuttamatta jo olemassa olevaa toteutusta. Diplomityossd kuvategdghballinta-
jarjestelman maarittelyn perusteella lukijalle tulisi muodostua kutép siita asioita tulee
ottaa huomioon testikohdeadapterin suunnittelussa.

TABLE OF CONTENTS

PREFACE e aa I
AB ST R A C T e Il
THVISTELMA ...ttt ae et e e e te e erae e eaeeeeneee e 1l
TABLE OF CONTENTS. ..o e e aans v
ABBREVIATIONS ...t e e VI
DEFINITIONS OF TERMS ..o VI
1 INTRODUCTION ...t e e e et e e et e e et e e e aa e e eannaeees 1
2 TTCN-3 CORE LANGUAGE....... o 3
2.1 TTCN-3 as a Programming LanQUAaQJEcccoeeeeoeie 3

2.2 MOAUIE ... e e 4

2.3 ATeSt Case and TESICASEcciveeurieiiiee e e e e e e e 5

2.4 Components, Ports, and Test Configurations.............cccooeeiiiiiiie 6

2.5 VEIAICE .o 9

2.6 Testcases, Functions, and ARSIEPS..........oovvviiii i 10

2.7 TYPES AN VAIUES ... 11

2.8 TEMPIAIES ..ovvee e 13

2.9 Communication OPEratiONS............ceeiieeeiieeiiiie e ee e e 15

2.10 Alternative BENAVIOUccooiiiiiiiiii e 17

00 I R I 41T £ PPN 20

2.12 Encoding and DeCOAINGcccovviiiiiiiiiie e 20

3 TTCN-3 RUNTIME INTERFACE ...t e e 23
3.1 Structure of TTCN-3 TeSt SYStEMcceeiiiiiiiie e 23

3.2 Overview of TTCN-3 Runtime Interfacec.ooevvviviiiii e, 26

3.3 Connection HaNAliNG.......ccoooiiiiiiii 28

3.4 Message-based Communication............cooooviiiiiiiii 29

3.5 Procedure-based COMMUNICALION............ccuuuiiiiiiieeiiiieiee e 30

4 GENERAL PURPOSE SA ... ettt 33
4.1 Motivation and Background...............coeoiiiiiiiiiiiii e 33

4.2 Connection Manager System CONCEPL......cceviieeiiiiiiiiiiiii e, 35

4.3 REQUITEIMENTS ..o 40

o T R @70 | 1= Tox i (o] 4 LT 41

L T 1o 1= o111 1T ¢3S PPPPPRRPPPPPPUPRt 44

e TC T [01 {0 g 0 = Lo TS (o] >V = T 46

4.3.4 CONCUITEICY ..iieeiieiiitiies s e e et et ettt s e e e e e s ee bt s e e e e e e e e eb b s e e e e e s eesbabn s eeeaeeeeees 50

4.3.5 Operation handling OF0erueeuiieieieieieeeieeeeeieeeeeeeeeeeeeee e e 51

S INTERFACES. e 56

L0t R (o] 1 o] o 56

5.2 CoNNECtioN INTEIMACE e 57

5.2.1 ONdesign ChOICEScccvviiiiiiieeeeeee 57

5.2.2 Type defiNitioNSooiiiiiiiiiiie e 60

5.2.3 On transfer syntax and encodingccccooveiuiiiiiiieeeiiiiieeee e 68

B5.2. 4 OPEIALIONS ...ttt ettt 73

5.3 Ermor HANAING.....coooooieeeeee 78

5.4 Connection Interface Usage EXamplescccooviiieiiiiiiiiiiiieeeeceeeen, 81

5.4.1 Operation MESSATESccceeveieieieieieeeeeee e e e e e e e 82

5.4.2 TCP connection — OPeN rEQUESE.........cceeveieiiieeeieeeeeeeee e 83

5.4.3 TCP connection — opened confirmationccccceeeviiiiiiiieeenn i, 85

5.4.4 TCP coNNECtioN — datal........cueevieeeiiiiiiiiiiie e 88

5.4.5 TCP connection — CloSe reqUESTcoocueiieiiiiiieiiiiiee e 89

5.4.6 TCP connection — closed confirmation and indicationccc........ 90

5.4.7 TCP Server @Xampleoooiiiiiiiiiiieiiiiee et 91

5.5 Overview of CM System Interface...........cccooeeviiiiiiii 95

5.6 Overview of CM Class INterface.........ccocoooooiiiiiiiiiiiii e 97

5.7 Overview of Mapping INterface. ... 97

B CONCLUSIONS ... a e aas 99
REFERENGCES e 102
APPENDICES.o 103
A INTERFACES IN DETAIL....co e 103
Al CM System INtErfacecooooviiiiiiiiii 103
ALL DalA LYPES ettt aaae 104

N A @ T == 1o o 1 107

A2 CMCIass INtErfaCecooeeviiiiiiii 125
A2.1 DA LYPES ...ttt 126

A.2.2 OPEIALIONS ..eeeeiiiiieeitiie ettt ettt ettt e e e e nebe e e 126

A3 Mapping INErfacCeoooiiiiiiiii 136

A3l DaAlA LYPES .ottt aann 137

A.3.2 OPEIALIONS ...uuiiiii e nnnnnnnnnnne 137

B MSC DIAGRAMS e 140
Bl O PN e eeee 140

2 302 O 1 0] PPN 141

B.3 SHAIUS .. e eeee 142

2 O [1= - RPN 143

2 S T O [0 1= =T o RPN 144

B.6 TeIMUNALE. .. . uutiiiiiiiiiiiiiitieete ittt s e seeeeennnnnnes 145

B.7 IMESSAUE . .ceeeeiiiii ettt 146

S T o o Tox =T [= TSR 146

B.9 Receipt of a message or procedure operation..............coeevvvieeieeeeeeeeennnnns 147

ABBREVIATIONS

CClI

CD
Cl

CM
CSl

ETS
IDL
IuT

Ml
MSC
MTC
PA
PDU
PTC
SA
SAP
SUT
T3RTS
TCI

TL

™
T™MC
TRI
TSI
TTCN-2
TTCN-3

CM Class Interface. The interface between theSystem Component and
the CM Classes.

Coding/Decoding

Connection Interface. The TTCN-3 language lexsdr interface to the CM
System.

Connection Manager

CM System Interface. The interface providedigyCM System
Component to the SA.

Executable Test Suite (defined in ISO/IEC 9&46-
(CORBA) Interface Definition Language
Implementation Under Test

Mapping Interface. The interface between thezs@ the CMs.
Message Sequence Chart

Main Test Component

Platform Adapter

Protocol Data Unit

Parallel Test Component

SUT Adapter

Service Access Point

System Under Test

TTCN-3 Runtime System

TTCN-3 Control Interface

Test Logging

Test Management

Test Management and Control

TTCN-3 Runtime Interface

Test System Interface

Tree and Tabular Combined Notation, 2ndiBdit

Testing and Test Control Notation, version 3

Vi

DEFINITIONS OF TERMS

CM Class

CM System

CM System Component

cmClassReg

Codec

Connection Manager (CM)

Control connection

Control port

controlMap

Data connection

Data port

(En)coding attributes

handlerMap
Stand-alone control
connection

tsiMap

TTCN-3 tool

Entity that provides communication mednsedtain kind with the SUT.
Each established connection using a class is héuhgle CM belonging to
the class.

A general term meaning the CM System Q@uorapt, the CM Classes, and
the CMs, along with their data structures.

Entity that provides the CMt&ysinterface to the SA. It uses the services
provided by the CM Classes that are registerediinto

Data structure within the CM System Qumapt, which contains interfaces
to all the CM Classes that are present in the Chte3y.

Piece of software that encodes values ofsaddF TCN-3 types into transfer
syntax form and back.

Entity that maintains aerma data connection, and which can be
controlled via a control connection.

A connection that is used totic@dmne or more data connection of a
component.

A port that is used for configuringne®ctions for data ports.

Data structure within the CM System Comgnt, which is used by it to find
which data connections are controlled by which m@mtonnections.

A connection that a component pased with Connection Interface Open
operation.

A port via which a test case componentocanmunicate with the SUT.

Both theencode andvariant attributes, that can be defined for a
TTCN-3 language element with theth statement. These are used to
select which codecs are used and to guide the sadencoding of abstract
TTCN-3 values into transfer syntax form.

Data structure within the CM System Congmt, which is used by it to find
which CM Class and which particular CM is handlagertain connection.

A connection that is not used to control any datanection, but which is
used as a signaling link with a CM.

Data structure within the SA, which is usedstoring component and port
identifiers of connections. Defined in Section 3.3.

A program that either compiles or iptests modules written in TTCN-3
Code Language to make them executable.

Vi

1 INTRODUCTION

TTCN-3 is a language designed for specifying Abstract Test Suites) (WitB which the
test target, System Under Test (SUT), is tested. As ahgribis document, there is very
little literature on TTCN-3 as a test programming language,even less, if anything at
all, on SUT Adapter (System Under Test Adapter, SA) implertientaThe reason for
this is that TTCN-3 is a new language that was published byopEan
Telecommunications Standards Institute (ETSI) in 2000 and its staisdstriil evolving.
A SUT Adapter is piece of software that handles the actual comeation between the
SUT and the program that runs test cases and decides their. rAgudts one wants to
build an own adapter from the scratch, the material one can tesmtthe TTCN-3
standard, and what happens to come with the used TTCN-3 tool. A TTGb-&ta
program that is required to interpret or compile the written test suiteS)(#@Tmake them
executable. There are no examples in the standard on how one coakl aeahdapter,
and what things should be considered. The standard does provide an intierfabech
the adapter communicates with the rest of test system, but houtilires the interface
operations and their parameters is left to the adapter designet d¥mes to the
documentation and example adapters that currently come with the -BTiGdls, these
seem to be very minimal as of writing this document. The documamtaight only state
that "The TRI interface is specified in [T3TRI]. If you need aapter using TRI
interface for a special purpose, please contact our sghestehent.”, which is not very
helpful. The example adapter, if such is provided, can be a sirdpfgen that opens a
TCP or UDP connection with a fixed end-point, without much configurgtassibilities.
It can also be, that this adapter can be used with the messmgkdperations TTCN-3
language provides, but the procedure-based testing functionality dN-BT€annot be
utilised. In addition, this kind of adapter may lack any kind of errodlwag and it may
not be suitable for situations in which test case configuratiorclsange during an on

going test case.

The purpose of this thesis work is to give the reader a short ovepneWTCN-3
language and test system, and how one can build such an adaptenthatused for

establishing communication channels between test targets ofediff&inds. The

presented adapter system alone cannot be used for communication webht tteggets,
but it provides a framework into which real adapter implementatiansbe added, and
which can be controlled in a uniform way. This adapter frameworksteisyis called as
Connection Manager System in this document. The text should give al#aes teader
what things should and could be considered in adapter design, evenpifetented

framework is not used.

The content of this document is divided into theory and background part é@hapind
3), which gives to the reader an overview of the TTCN-3 based ataitslards, and to
practical part (Chapters 4, 5, and Appendix A), which specifies a Coomeévianager
System that is compatible with the TTCN-3 standards.

Chapter 2, “TTCN-3 Core Language”, gives an overview of TTCOeBe Language,
which is used for specifying test cases. It contains TTCN-3 fradenents to show what
the language looks like, and it contains references to the sectitims stindards where
the presented features of the language are specified in ntaike Gbapter 3, “TTCN-3
Runtime Interface”, describes what different elements amtatdized interfaces are
present in a TTCN-3 test system, and how they are relatbée tedt cases written in the
core language. After this, the interface between execuedtiedses and the adapter that

communicates with the test target is explained in more detalil.

The concept of the Connection Manager System is explained in Chgpt&eneral
Purpose SA”, which describes the entities present in the systdnmterfaces between
them. The chapter also specifies requirements to the systentdmoections and entities
are identified within the system, what information is stored andreyhend how
operations are handled concurrently. The interfaces between thiesemte specified in
Chapter 5, “Interfaces” and in Appendix A. This is done at an ab&taset, meaning that
the information that is passed between the elements, and theayefat doing this, are
specified in a language independent manner. Message Sequencestibwaitg the use
of the interfaces can be found in Appendix B. Chapter 6 contains a synamer
conclusions of the presented ideas.

2 TTCN-3 CORE LANGUAGE

The TTCN-3 standard is divided into six parts, which each coveffexatit part of the
language: Part 1: TTCN-3 Core Language [T3CORE], Part 2: NF¥CTabular
Presentation Format (TFT) [T3TFT], Part 3: TTCN-3 Graphieesentation Format
(GFT) [T3GFT], Part 4: TTCN-3 Operational Semantics [T30B3t 5: TTCN-3
Runtime Interface (TRI) [T3TRI], and Part 6: TTCN-3 Control ifagee (TCI) [T3TCI].
Of these, the Part 1: TTCN-3 Core Language is the mosttedsé specifies the textual
syntax of the TTCN-3 language and how one writes test caseg.viithiso serves as the
syntactical and semantic basis for other non-textual representédrmats of the
language, such as the tabular format and graphical formathwainé specified in Part 2
and Part 3 of the standard. In Part 4: TTCN-3 Operational Semahgécsemantics of the
core language is specified in detail by using a flow graph inotalt shows how the
statements in a TTCN-3 module (a compilation unit in TTCN-3, asch .c file in C) are

to be interpreted when the test cases are executed.

This chapter provides an overview of the TTCN-3 core language base@SI standard
ETSI ES 201 873-1 V2.2.1 (2003-02) "Methods for Testing and Specification (MTS
The Testing and Test Control Notation version 3; Part 1: TTCN-3 Carguage”
(referenced as T3CORE in the text). Topics of the languslgeant to this thesis work
are shown in greater detail, while less relevant are only armettior completely omitted,
irrespective of their importance in the TTCN-3 core language. fExé contains
references to the sections of [T3CORE] where more detailedriafam on the presented
topics can be found. Where relevant, the text usesdhaer font to highlight the

reserved words of the language.

2.1 TTCN-3 as a Programming Language

TTCN-3 Core Language can be seen as a programming languaigh, is meant for
specifying collections of test cases, Abstract Test SUKES). To be able to execute the
test cases within an ATS, a tool (compiler, interpretergdgired to transform the ATS
into an Executable Test Suite (ETS). The language is independira environment in

which the testing is done, what is being tested, and what kindtwofgtés in question.

The testing can be module testing, integration testing, conformastieg, and so on
[T3CORE: s. 4]. The test target can be a function librarytevriin some language X, a
web server, or a network of components whose joint behavior is t@atedme chosen

interfaces.

The language does not currently provide syntax for real-timmgestvents that occur
have no time stamps, and it is not possible to read absolute tinsystem time. Hence,
one cannot directly test whether something happens at a giverottidey, or whether
events occur within certain tolerance, without building this functipnddy writing
custom (external) functions [T3CORE: s. 16.1.0], and by possibly tiameging events
(function calls, messages) outside the TTCN-3 Core LanguagelMiE[] a solution is

proposed to extend TTCN-3 to handle real-time requirements.

The difference between TTCN-3 and other programming languad®tistthas been
designed for testing. It provides at language level means fudlihg test verdicts,
operations for procedure- and message-based communication, andivexabilities to
specify and match against data.

2.2 Module

The TTCN-3 language element calletbdule corresponds to a compilation unit in
traditional programming languages [T3CORE: ch. 7]. It can be analgpeadpiled or
interpreted, it may contain a single or several test case#, @l be used as a library by
other modules. The TTCN-3 standard does not mention the relationshigbetheedules
and how they are stored into files. Because of this, some TTObIsallow one to have
several modules defined within a file, and some tools only understandodule per
file. This may cause problems when the used tool is changed. lfeisprablem is that

the used file suffix also varies between tools.

Each module is divided into two parts, definitions part @oatrol part, both of which
are optional. The definitions part contains top-level definitions, ssdlype definitions,
data (template) and constant definitions, port and component definitions, and function and

testcase definitions. It is possible itaport definitions from other modules to make

them visible in the referring module. The control part can be se#dred'main function”

of the module and its purpose is to call the test cases dédfinie definitions part. It

contains the logic for executing the test cases in certa@r,atccan apply execution time
restrictions to the test cases, and it can use the defingpmtsfied in the definitions part
of the module to specify local variables. Because the controligagtional, the used
TTCN-3 tool may provide an alternative way to execute testscasthout using the
control part. For example, it can have a graphical user ingeffam which the executed

test cases can be selected.

It is possible to specify parameters for a module, meaningnthan a test case or the
control part of the module is executed, it can read these pararaatebehave according
to them. The parameters are like module global constants, whose asduget at the start
of the execution. For example, one could have the address of therdgesiaind maximum

execution time as module parameters.

The following TTCN-3 code fragment shows a module definition of mollylglodule ,

which could be stored in fillyModule.ttcn

module MyModule
{

/I Definitions part
import from OtherModule all;

type integer MyPosInt (O .. infinity);

testcase tc_myFirstCase() runs on MyComponent sy stem MyTsi

{

}

/I Control part

control
execute(tc_myFirstCase(), 10.0); //Maximum ex ecution time 10.0 seconds
execute(tc_mySecondCase()); //No maximum execution time

}
}

2.3 A Test Case and Testcase

TTCN-3 Core Language has a language element caitdase [T3CORE: ch. 17].
The difference betweetestcase and a “test case” is tha¢stcase is language
element, while test case is a general term used in this @mtummean a set of checks
done to the System Under Test (SUT), in order to test somdisetiavior. A test case

consists of destcase , that can be seen as the main function of a single case, and of
any other functionality executed in parallel with thstcase . A testcase is always
executed within an entity calletbmponent , and it can call normgunction s and
altstep s to extend its behavior. The result of executinggsicase is a verdict,

which tells whether the system under test passed the test.

A test case can be both message- and procedure-based [T3CORE: kles®ape-based
testing consists of sending messages to the System UndeSUd3t (eceiving messages
from it, checking whether messages were not received in timepfasteecking whether
the received messages are in the right order and that theyncogité values. Procedure-
based testing consists of calling functions of the SUT, receivaetgrr values and
exceptions, receiving function calls, and of passing function returesraand raised

exceptions to the SUT.

2.4 Components, Ports, and Test Configurations

The behavior of a single test case consists of executing furiggo(tastcases and
functions) in one or more componentscdmponent is a user specified entity, which
contains user-definecport s, via which the component can interact with other
components and the SUT with message and procedure operations [T36€OBEIn
addition to the ports, the component may contain private variables apds.tifthe
component itself does not specify any kind of behavior but it providesaronment for

it. This means that one can start functionality in the componenhantiihctionality can
then use the ports, variables, and timers of the component. The fuliistitret can be
started in the component can be eith&gsdcase or afunction [T3CORE: s. 22.5.

A component is shown conceptually in Figure 2-1.

essage and/or procedure based
communication

Component Component

Behaviour:
testcase or
function

Variable

Component

Figure 2-1: Component model.

One of the components that exist during a test case is called T¥at Component
(MTC). It is special in the sense that when a test cadgosen to be executed, this MTC
component is automatically created to execute it. When the M&ches the end of its
execution, then the test case ends. The MTC is responsible fongrether components,
which are called Parallel Test Components (PTC), and foirgtdttnctionality in them.
The creation of new PTCs and starting of functionality imtlean also be done by the
PTCs.

Another special component that exists for the duration of the &sst is called Test
System Interface (TSI) component (or just system component tensy®r short)

[T3CORE: s. 8.3]. Unlike the other components, one cannot start arjohality in it,

and it does not have any internal variables or timers. This compaisrdsaan abstract
interface between the test case and the System UndeISLEBL (The ports of the system
component (TSI) are visible to the SUT Adapter, which routes angages or procedure
operations seen at these ports between the test case componehts raad test system

interface at the SUT (see Figure 2-2).

The components and TSI are abstract TTCN-3 Core Languagedensiructs. The
actual program that implements the components and test caseidozalled TTCN-3
Executable (TE). It interacts with the SUT Adapter via TTERuntime Interface (TRI).
The TE, SUT Adapter and TRI are not part of the TTCN-3 Core wage so they are
explained later in Chapter 3.

When two components want to communicate with each other, the ports of the components
have to be first connected with each other. When a component neealsrtuicicate

with the SUT, its port has to be mapped with one of the ports of #hecdmponent

Abstract Test System Interface

! TRI Real Test System Interface
T
SUT Adapter

TTCN-3 Executable (TE) SUT

Access

Component)
point

Mapping and propagation
of messages
and procedure

operations

Access
point

Figure 2-2: Test System Interface.

(when a port of a component is connected with a port of the TSI compitngsaid that
they are mapped with each other, instead of connected with daaf). dtfter this, the
component can perform message-based, procedure-based, or both kinds
communication operations via the port. What messages and procedurearallise
performed via the port depends on the type definition of the port. &dgfinition of the
port specifies whether the port can be used for message-basacedure-based
communication, or for both, and it contains a list of supported message ayde
procedures signatures. The list also specifies the directionighwhach item can move
through the port, as seen by the component in which the port is used RE3G(08.4.0].
This direction information restricts what kind ports can be connentddmapped with
each other: a port has to be able to receive what a connectedayosend. The precise
rules for legal port connections and mappings can be found in [T3CORE: s. 22.2.1].

When the component sends a message or performs a procedure tallpad that is
connected with a port of another component, the message is delivehedrazipient’s
port queue, which is modeled as an infinite length FIFO queue ilNT3{O03CORE: s.
8.1]. In the case the port of the sending component is mapped with i €ygstgonent
port, the message is delivered to the SUT by some means BJithédapter (SA). It
depends on the implementation of the SA how it knows to deliver the gesstathe
right place. The SA is further explained in Chapter 3.

The components are created, their execution is started and stoppethemngdort

mappings are done with the configuration operations specified in [TECEIR 22]. The
following TTCN-3 code fragment shows how the component executing hbens
function creates a new PTC, connects one of its own ports with afpibie PTC, maps
one other port of the PTC with a system port, starts behavibeiRTC, and waits until

the PTC stops its execution, after which it explicitly stops itself:

of

function f_startup() runs on MyComp
{
/* A new component of type SomeComp is created, and a reference to this
* component is stored into variable cp_someComp Ref.
*
/
var SomeComp cp_someCompRef := SomeComp.create;

/* Local port pt_control is connected with the p ort pt_ctrl
* of the newly created component.

*

connect(self:pt_control, cp_someCompRef:pt_ctrl)

[* Port pt_data of the newly created component i s mapped

* with the port tcp of the test system interfac e component.
*

map(cp_someCompRef:pt_data, system:pt_tcp);

/* Function tp_someBehaviour() is started in the component,
* and string "10.10.10.1" is givento itas a p arameter.
* start() is a non blocking command, so the ex ecution continues

* immediately after the below statement.
*
cp_someCompRef.start(tp_someBehaviour("10.10.10. 1");

/I Wait for cp_someCompRef to finish its executi on.
cp_someCompRef.done;

/I Set own verdict to pass.
setverdict(pass);

/I Stop own execution.
self.stop;

2.5 Verdict

Every component that exists during a test case has a local odlject verdict, which it

can set getverdict) based on how it experiences the behavior of the other
components and the SUT [T3CORE: ch. 25]. Components can also read theurcswr
verdict value getverdict). The possible verdict values a component can set are
none, pass, inconc , andfail . Once a component has set a value for its verdict, it
can only "worsen" the verdict value. What this means isihia can be seen as the best
verdict value andail as the worst, and the verdict value changes only when a value
worse than its current value is tried to be set. Thus, one coutdrsetverdict topass ,
andpass tofail , but notfail back topass ornone. Theinconc verdict stands

for inconclusive, and it can be used for example in situations, in wiecBWT does not

do anything illegal, but an unexpected situation occurs which thedass has not been

designed to handle.

The total verdict of the test case is the worst verdict of the components ti@paiad in

the test, and its value is resolved by the used TTCN-3 tool.

For example, when the testing consists of transferring datatvatBUT concurrently in
two different directions, uplink and downlink, there could exist an own &3dr@ponent
for handling and verifying the data transfer in each direction. dtaé verdict of the test
case depends now on the verdicts of the uplink and downlink transfer, whitle czen
as sub-tests of the whole test case. These sub-tests cotlsh exisie other test cases as
stand-alone test cases (uplink data transfer test, downlinkrdasdetr test), or as parts of

more complex test cases.

2.6 Testcases, Functions, and Altsteps

TTCN-3 has three different function-like language elemeaetstcase , function
andaltstep [T3CORE: chs 16, 17]. Common to these is that they can define local

variables and timers.

A testcase is a function whose execution is always started in a componentisand i
return value is always the total verdict of the test case d€fimition of thetestcase
contains information on in which kind of component it can be startet (on), and
what kind of test system interface is used during the test(sgstem). The execution

of thetestcase can be started in the control of part of the module, or dirbgtlthe
used TTCN-3 tool when the control part is not used. In addition to aalydeénitions,

thetestcase can use the component internal definitions such as ports and variables.

A normal function can have input parameters, output parameters, input-output
parameters, and it can return a value. It is also possible tdysghetithefunction can

only be called or started within a component of a certain typehwhakes the internal
definitions of the component visible to the function (ports, timers, andhblas).
TTCN-3 has als@xternal functions , which can be called from the test cases, but
their implementation is outside the TTCN-3. &xternal function call results in a

TRI operation, which instructs the used Platform Adapter (PA) totlca specified
function (PA will be explained in Chapter 3).

Altstep is used for specifying action whose execution is triggeresbbe "receiving"”

event or operation, such as a timeout or receipt of a messagevithkiestcase and

10

function , it can be given access to the internal definitions of the component. A

example of amltstep is given in Section 2.10 Alternative Behaviour.

The below TTCN-3 fragment defines a component type, and a testeddeetexecuted

on an instance of the component type:

/I Component type definition
type component MyComp

/I Component local definitions:

/I Variable

var charstring g_identifier;
/I Port of type MyPort
port MyPort pt_port;

/* Testcase definition. This testcase gets executed in Main Test Component
* of type MyComp, and the used Test System Interfa ce component is of
* type MyTsiComp.
*
/
testcase tc_myCase(in charstring p_id)
runs on MyComp system MyTsiComp

g_identifier := p_id,;
pt_port.send(g_identifier);

}

2.7 Types and Values

TTCN-3 provides a set of basic and structured types, from whéhger can derive own
sub-types by restricting their values [T3CORE: s.6]. All thes® types are listed in
Table 2-1. The word "range" in the sub-type column means, that thearselefine an
own subtype of the root type by specifying a range of valid saloet, the word "list"
means that the user can specify a list of valid values forygee &ind "length” means a
length restriction for a type that can be indexed. There arefanltirestrictions on the
root types, so a value of tyjpieteger orfloat can hold any value from -infinity to
infinity, and a string have a length from zero to infinityphactice, the maximum values
depend on the used TTCN-3 tool.

Special to TTCN-3, it is possible to define a field of structungee record to be

optional, meaning that its value can be omitted, and it can be chediether the field
value has been set [T3CORE: ss. 6.3.1, C.15].uren type of TTCN-3 is different
from the union type of C-language. It contains only the alternative or varatrids been

assigned to it; the alternatives are not different represemtftrmats of the data stored

11

Table 2-1: Overview of TTCN-3 Types [T3CORE: s. 6.0, Table 3

Class of type Keyword Sub-type

Simple basic types integer range, list
char range, list
universal char range, list
float range, list
boolean list
objid list
verdicttype list

Basic string types bitstring list, length
hexstring list, length
octetstring list, length
charstring range, list, length
universal charstring range, list, length

Structured types record list
record of list, length
set list
set of list, length
enumerated list
union list

Special data types anytype list

Special configuration types address
port
component

Special default types default

into the union. It is possible to ask from a value of union type if aifggek variant is
stored into it, by using the predefinsg¢hosen function [T3CORE: ss. 6.3.5, C.16].

TTCN-3 is not strongly typed language [T3CORE: s. 3.1], but it degsire type
compatibility as specified in [T3CORE: s. 6.7]. Strong typing is reguin the case of
enumerated type, and in the communication operations that are explained irsect

2.9. In the case of non-structured types the type compatibility is defined as:

“value "b" (of type B) is compatible to type "A"if type "B" resolves to the same
root type as type "A" (i.e. integer) and it does no t violate subtyping (e.g. ranges,
length restrictions) of type "A".” [T3CORE: s.6.7.1]

This mean that one can assign a value of type A to a valup®Bywhen the allowed

values of A is a subset of the allowed values of B.

There is no automatic type conversion or promotion like in C in TTC8b3t is not
possible to mix for example integers and floats in the same sstpne TTCN-3 does
provide a set of predefined functions with which it is possible to coravéype of a
certain kind to another kind. There is also no "free" type in TBCMNat could be used

for containing a value of any kind. However, there exists a typedalytype that can

12

be used for storing value of any other type, that is defineldeis@ame module in which
the value ofanytype is defined. In other words, thenytype is defined "as a
shorthand for the union of all known types in a TTCN-3 module” [T3CORE: s. 6.4].

When a component performs a communication operation via its port tihaipjsed with

a TSI port, it is possible, but not required, to use spacidiess type to address a
specific SUT or an entity within the SUT [T3CORE: s. 8.6]. This address typeci§iepe
separately in each module, and it can be set as one of the uskgedpgees, or it can be
left as open type. In the case it is left as open type, amh @hmessage or procedure
operation is received from the SUT, one can use it to store thesaddalue of the SUT
without understanding its contents. The stored address value can thesedevhen
communicating back to the same SUT entity. The SUT Adapter eath@sddress value
(when present) to deliver information between the correct testamamponent and SUT

entity.

2.8 Templates

A template is data structure, that can be "used to either transmitcd distinct values
or to test whether a set of received values matches theatensplecification” [T3CORE:
S. 14.0].

A template specifies a single value when it is used for géngrdata to be transmitted,
and it can be optionally parameterized. A parameterized temphatecontain an
expression whose value specifies the value of the template. Whieamiplate specifies a
value for a structured type, some of the fields of the value canirdixad values and
some are set at run time with the parameters. This is vefylder defining differently
parameterized templates of the same type for differamateins. For example, when a
message corresponding to a protocol data unit (PDU) of protocol X neete
transmitted, it is feasible that the test case writer needis to specify values for the
fields of interest, and default values are used for the othelsfi®élor example, one
parameterized field could be message sequence number, which ndedsntoement
after each sent PDU. The below TTCN-3 fragment shows a defirfcr the PDU type

and a parameterized template for it:

13

/I Type definition of type MyPdu.
type record MyPdu
{

integer segNum,

charstring data

}

/I Parameterized template of type MyPdu with identi fier a_myPdu_s.
template MyPdu a_myPdu_s(integer p_seqNum) :=

segNum :=p_segNum,
data :="Who are you?"

}

When a template is used in the receiving direction to mattth received values, each
template can specify a set of values that it matches withtérhplate definition below
matches any value, which is of tymMyPdu, hassegNum within range 100 to 200, and

contains as data either the character string "Alice" or "Bob":
/I Matching template. This cannot be sent, only com pared against received data.
template MyPdu a_myPdu_r :=
{
seqNum := (100 .. 200),

data :=("Alice", "Bob")
}

In TTCN-3 it is possible to construct a new template from direpecified templates, by
using them as (field) values within the new template, eitheafitegtly assigning them or
by passing them as parameters to the new template. A ngdaternan also be defined
by modifying a template by redefining it partially. Thésatures make the creation of
very complex values easy, but it is also very easy to speaifyplex hard-to-maintain

dependencies between templates. A change in one templatechmgige the matching of
several other templates, thus care must be taken and planning usesipetiéying large

sets of test data. The below example shows the use ohgxistnplates to specify new

ones:

template charstring a_allowedData := ("Alice", "B ob");
template integer a_validRange := (100 .. 200) ;

/I a_validRange can be passed to a_myPdu2_r as a pa rameter
template MyPdu a_myPdu?2_r(template integer p_ a_segNum) :=

segNum :=p_a_segNum,
data :=a_allowedData

}

/I Modified template, uses a_myPdu?2_r as basis.

template MyPdu a_myPdu3_r(template integer p_ a_segNum)
modifies a_myPdu2_r :=

data :="Eve"

}

14

In addition to be able to specify a list or a range of values,NFE(orovides other
matching mechanisms, such as matching against a string paitailtar(to a regular
expression), string of specific length, complement of a list,tedchitalue, any value, and
any-or-omitted value. The matching mechanisms are introduced in RBCE 14.3]

and their usage is specified in Annex B of the same document.

The examples given in this section concerned only type templdtesju@l importance,
TTCN-3 also provides syntax for specifying templates for funatals. These templates
can be used to specify which SUT function should be called with paratmeter values,

and what calls are expected from the SUT.

2.9 Communication Operations

TTCN-3 has both message- and procedure-based communication oper#tiondich
components can interact with each other and with the SUT. Allctéimemunication
operations are listed in Table 2-2.

The operationsend , call ,reply , andraise are called sending operations, and they
use syntax similar to each other. Of thesend, reply , andraise operations are
automatically non-blocking, meaning that execution continues #fteroperation call

without waiting for the recipient to actually receive and hatitdemessage or procedure

Table 2-2: Overview of TTCN-3 communication operations [T3REB s. 23.10, Table 17].

Communication operations
Communication operation Keyword Qan be used at Can be used at
message-based procedure-based

ports ports
Message-based communication
Send message send Yes
Receive message receive Yes
Trigger on message trigger Yes
Procedure-based communication
Invoke procedure call call Yes
Accept procedure call from remote entity getcall Yes
Reply to procedure call from remote entity [reply Yes
Raise exception (to an accepted call) raise Yes
Handle response from a previous call getreply Yes
Catch exception (from called entity) catch Yes
Examine top element of incoming port queues
Check msg/call/exception/reply received [check | Yes Yes
Controlling operations
Clear port clear Yes Yes
Clear and give access to port start Yes Yes
Stop access (receiving & sending) to port stop Yes Yes

15

operation. Thecall operation is automatically non-blocking only when the called
procedure is explicitly defined to be non-blocking [T3CORE: s.23.3.1.4], on \the
caller explicitly specifies that it wants to continue exexutvithout waiting for response
from the callee [T3CORE: s.23.3.1.2]. This makes it possible to posthenegponse
handling and perform other operations meanwhile. All the sending operatieay the
local port used for the operation, what information is to be sent, optiengdient
information, and an optional response handling part. The information t@rsamitted
can be the value of a local variable or constant, or like in nmassts¢ a predefined
template. In the case the component port is connected with tre qfoseveral other
components, the recipient information is used to specify a singlpieet. Several
recipients cannot be specified, because TTCN-3 does not support mioljicas
broadcasting as of writing this document. The following code fragment shogssaanple

procedure call and sending of a message:

/* Call function someFunction with parameter values firstParam and

* secondParam, without waiting the function to ret urn.

*/

pt_myPort.call(someFunction:{firstParam, secondPara m}, nowait);

/* Send integer value 1 via port pt_myPort to compo nent that has reference

* cp_someCompRef
*
pt_myPort.send(integer:1) to cp_someCompRef;

/* Send parameterized template a_myPdu_s */
pt_myPort.send(a_myPdu_s(currentSegNum));

The operationseceive |, getcall , getreply , catch , trigger , andcheck are
receiving operations. All these operations, extegger , are used to test whether the
specified event is as the first event in the port queue of tlegfisdeport. If the event is
not present, the execution of the component becomes blocked until a matehirg
occurs. If the event is present, it is then removed from the port queLithe execution
continues with the next statement. Exception to this ichieek operation, which does
not remove the event from the queue. Operatrigger differs from the other
receiving operations so that it removes any non-matching eventstifie queue until a
match is found, after which the execution continues. All the recepfpregations specify
the examined local port, a matching condition (template), optiortedlgxpected sender,
and an optional assignment part. The following TTCN-3 code showsv alifeerent

receiving statements:

16

/* Match with integer of value 1, received via port pt_myPort, and sent
* by component cp_someCompRef

*

pt_myPort.receive(integer:1) from cp_someCompRef;

/* Match with a value, that matches with the restri ctions posed by

* template a_myPdu_r, and store the received value to variable localVar

*

pt_myPort.receive(a_myPdu2_r(currentSegNum)) -> val ue localVar;

/* Match with function call of myFunction, with any first parameter value
*and 1 as the second parameter value, and store t he first parameter value

* into local variable firstParam

;t/_myPort.getCall(myFunction:{*, integer:1}) -> par am (firstParam, -);
Because of the blocking semantics of the receiving operations, they arg usadllalone
only for example for synchronization, when it is sure that theat&gesvent has occurred
or will occur as the first event of the specified port. If an eweher than what was
expected occurs as the first event, the FIFO nature of the portsqoeuses a deadlock
situation: The receiving operations can check only the first @uetite queue, not any
other events. Hence, a non-matching event blocks the processing ofhanyevents,
because the event is not removed from the queue by the non-matchingpop&ier

these situations TTCN-3 provides e statement.

2.10 Alternative Behaviour

In a test case it is not always known beforehand in which ordaircestents occur. The
SUT can have several legal actions it may perform, and itbedrave completely
erroneously. The situations in which several alternative events are passibi@ndled by
TTCN-3alt statement. It is specified in [T3CORE: s.20.1] and its evalualgorithm
is specified in more detail in [T30S: s.9.3].

Thealt statement specifies a list of receiving operations (altares), with which the
occurrence of events of interest is conditionally examined. Theviegeperations are
receive , getcall , getreply , catch , trigger , andcheck (explained in the
previous section), with the addition oflone and timeout [T30S: s.9.3].
“Conditionally examined” means that each alternative has a boglemd (expression)
before it, and only when its value evaluates to true, the regedperation following it is
tried to be evaluated. Thione operation blocks the execution of the calling component,

until the specified other component has finishefuitgtion execution. Théimeout

17

operation blocks until the specified timer reaches a defined vdlube lalternative
matches with an event, then the code block following the alternatiereisuted, after
which the execution continues after tié statement, unlessrapeat statement is
encountered. If the alternative does not match, then all the follaltexgnatives are tried
in the order in which they are listed within thie statementRepeat statement can be
used to re-enter thdt statement. It is possible to write nesteddlie statements, by

writing a newalt statement within the code block of an alternative.

The below TTCN-3 code fragment shows how dlte statement is used to handle the

events of two portgpf_myPort , pt_control) and a timert(timer):

/I Function-local timer
timer t_timer;

/I Function-local variables
var MyPdu myPdu;
var integer count := 0;

/I Start timer
t_timer.start(10.0);

/I Alt-statement

alt
/I Receive maximum of maxCount PDUs that match w ith template a_myPdu_r
[count < c_maxCount] pt_myPort.receive(a_myPdu_r) -> value myPdu
{
/I Forward the received message via port pt_m yOtherPort

pt_myOtherPort.send(myPdu);

setverdict(pass);
count := count + 1;

/I Wait for next PDU
repeat;

}

* Else if we receive something else than a_myPd u_r (plain .receive matches
* with everything)
*
/
[/* Empty boolean guard is treated as true */] p t_myPort.receive

log("Received something else");

setverdict(fail);
/I Execution continues at line “self.stop”

}

/I Else if we receive from control port an instr uction to stop
[l pt_control.receive(charstring: "stop")

log("Received control message "'stop™ via pt _contrl");
/I Execution continues at line “self.stop”

}

/ Else if timer expires
[] t_timer.timeout

/I Execution continues at line “self.stop”

}
}

self.stop;

18

The evaluation ohlt statement is based on concept called snapshot, which is taken

when thealt statement is entered or re-entered. Snapshot is descrilfexistabhdard as

follows:
“A snapshot is considered to be a partial state of a test component that includes
all information necessary to evaluate the Boolean ¢ onditions that guard alternative
branches, all relevant stopped test components, all relevant timeout events and the
top messages, calls, replies and exceptions in the relevant incoming port queues.
Any test component, timer and port which is referen ced in at least one alternative
in the alt statement, or in top alternative of an a Itstep that is invoked as an
alternative in the alt statement or activated as de fault is considered to be

relevant.” [T3CORE: s. 20.1.1]

Altstep is a function like element in TTCN-3 that can be used inste#iteateceiving

operations in thalt statement. The beloaltstep definition

altstep alt_timeoutHandler(timer p_timer)
[l p_timer.timeout

log(“timer expired");

could be used within a@lt statement in the following manner:

timer t_timer;
t_timer.start(10.0);

alt

{
/I If we receive from control port an instructio n to stop
[* Empty boolean guard is treated as true */]
pt_control.receive(charstring: "stop")

log("Received control message ""'stop™ via pt _contrl");
/I Execution continues at line “self.stop”

}

/I Altstep is used to handle t_timer
[] alt_timeoutHandler(t_timer);

log(“alt_timeoutHandler handled the timeout e vent");
/I Execution continues at line “self.stop”
}
}

An altstep can also be activated as one of the default alternativeshé\ctivated
defaults are that are tried to be evaluated, when none of the dikeznatives in the
executedalt statement matches [T3CORE: ch. 21], or when a stand-alone neceivi

statement does not match.

19

2.11 Timers

TTCN-3 provides at language level syntax for specifying both impdod explicit
timers. The implicit timers are the timers whose valuesi§pmaximum execution time
for testcases andfunction calls [T3TRI: ss. 23.3.1.2, 27.1]. These timers cannot
or need to be started, read, or stopped by the user. Explicit reetbe user created
timers that can be started, read, and stopped, their timeobé caaited for, and they can
be given as parameters fienctions andaltsteps . [T3TRI: chs. 11, 24]. In the
previous section a timer was used in the context ofalhe statement, to specify
maximum time how long the component waits for messages to basgdcfrom the

specified ports, until it continues its execution.

2.12 Encoding and Decoding

All the values that exist during a test case can be thoughtraf bethe abstract TTCN-3
type definition form. Their tool specific internal representatiommf is of no concern to
the test case writer. When these values are sent beteserase components, they can
be passed between the ports of the components in their internadergpteon form.
However, when a value of certain type is sent by a testamamsponent to the SUT via
Test System Interface, then the test case writer wargigecify the transfer syntax of the
values. All the values that are sent through the Test Systerfat@eorts to the SUT are
encoded into some transfer syntax form by the codec systemedf TUBCN-3 tool.
TTCN-3 does not specify any tool independent way to specify trasgfgax for the
data, but it is possible to adshcode andvariant attributes to a module, group, type
and template, and field definitions. These attributes are usefisgdunts for the used
codec system how the values should be encoded. The codec systantetperts the

attributes in a tool or codec specific manner.

For example, the plain type definition

type integer SeqNum;

does not say anything about its transfer syntax; it could beasemt32bit length integer

value in network byte order; it could be sent as a sequence of 1-latgytdiseqNum; or

20

it could be sent as a sequence of ASCII-characters containexgualtrepresentation of
the value in English, such as “one-hundred fifty-one”, if this isfoéh@at understood by

the recipient.

A type definition with attributes looks like this:

type integer SeqNum with
{

encode "integer 32 bits";
variant "network byte order";

}

The encode andvariant attributes are text strings without any restrictions on their
content or syntax. The difference betwesgitode andvariant is that the latter one

is meant for refining the former.

When a value is sent via Test System Interface to the SiTijrist automatically passed
to some codec, which may read the attributes of the value, and do titéngricased on
them. It may also do the encoding based on the type identifier orabereinformation.
Once the value has been encoded, it is passed to the SUT Adapher TE (an entity
which executes or interprets the test cases, explained fioi88cl) as a parameter of a
TRI interface communication operation (Sections 3.4, 3.5). Therefore, the S/Aesettay
data always in the transfer syntax form and it does not need testardkits contents. In
the opposite direction, the SA passes the data received from thanSthé& transfer

syntax form to the TE, which takes care of decoding of the data.

The interface via which the codecs are called to do encoding andidg is specified in
the standard [T3TCI: s. 7.3.2 TCI-CD], and the data interface wgias access to the
internal representation of the TTCN-3 data types is specifig@QT: 7.2 TCI Data], thus
it is possible to write own encoders and decoders. How the right dakted by the TE
depends on the used TTCN-3 tool. By using a proprietary interfaceadheould tell the
codec writer which types are present in the test case, ancbtlee writer could then
assigns a codec for each of the types, after which the tool kimoeal tthe right codec
based on the type identifier of the value to be encoded. Another altensathat the tool
tells the codec writer what different encoding attributes Ih@em defined in the test case,
and the codecs are assigned and called based on the attribuyges$hieatve. The codecs

might also be called based on the used TSI-ports. Since how the aoel@cade known

21

to the TE and taken into use is outside the scope of the standardsisthareation

between approaches taken by different TTCN-3 tool vendors.

The codec writer does not necessarily have to assign a uniquefoodsch different

type or attribute. The same codec could be used in differentigitsilabecause it can be
parameterised at the encoding time by the type and theaiedfettributes of the value

that is being encoded. This information can be used by the codetetonthe how it
should do the coding this time. For example, there could a single codec that knows how to
handle all the different string types of TTCN-3. It could use tlo¢ type identifier of the
to-be-encoded value to access it properly, and use its encoding esttibutetermine the

right transfer syntax for it.

22

3 TTCN-3 RUNTIME INTERFACE

The general structure of TTCN-3 test system implementasoexplained both in
standard ETSI ES 201 873-5 V1.1.1 (2003-02) “Methods for Testing and Spewifica
(MTS); The Testing and Test Control Notation version 3; PafBZN-3 Runtime
Interface (TRI)” [T3TRI] and in ETSI ES 201 873-6 V1.1.1 (2003-07) “Methfmts
Testing and Specification (MTS); The Testing and Test Contrahtidot version 3; Part
6: TTCN-3 Control Interface (TCIl)” [T3TCI]. The former parbrecentrates on the
interfaces with which the SUT Adapter and Platform Adapterantewith the rest of the
test system. The latter part covers test management andlcartich, along with other

things, specifies the interface for user-implemented codecs.

This chapter gives an overview what interfaces and componenpsesent in TTCN-3
test system implementation. After this the TTCN-3 Runtime fisterof the test system is

explained in more detail.

3.1 Structure of TTCN-3 Test System

There are a few differences between Part 5 and Part 6 offtbN-B standard how some
of the entities are named and grouped in the test system, buaithedea is the same.
Figure 3-1 shows the test system based on them, and it depiatethents that are
present in a real test system (program or several progthatsfan execute test cases

against a SUT. Four main elements can be distinguished in th&l-BT@st system

Test Management and Control (TMC)
Test .
Man?ggn;em Component, || Codng || Logging (TL)
== =% =
e | s | e [e
TTCN-3 Executable (TE)
TRI ———— = e |
SUT Adapter (SA) Platform Adapter (PA)
1z

~

System Under Test (SUT)

Figure 3-1: General Structure of TTCN-3 Test System.

23

implementation: Test Management and Control (TMC), TTCN-3 ExbRI@E), SUT
Adapter (SA), and Platform Adapter (PA). As the standard stidtesjecomposition of
the test system into smaller entities is only a conceptddabadefine interfaces between
the entities (e.g. TCI-CD, codec interface between the TE &)d tGus in a real test
system implementation this division does not need to be made. Then&du elements
could all be different parts of the same executable testergonoghey could be different
programs running on the same device, or they could be different proguamag on
different devices. How the elements are distributed between pmegeand devices
depends on the used TTCN-3 tool, and whether it supports distribution off @N&-3
Executable entity as specified in [T3TCI]. Two standardizedfates, TTCN-3 Control
Interface (TCI) and TTCN-3 Runtime Interface (TRI), existwaen the TE and TMC,
and between the TE and SA and PA, and they are specified irC[Tafnd [T3TRI]

respectively.

The TE entity corresponds to the executable code resulting fronpilation or
interpretation of an Abstract Test Suite (ATS), which consists anmore TTCN-3
modules. The ATS may have been written in the TTCN-3 Core langlesyibed in
Chapter 2, or by using some other alternative format such as tG&l-BTgraphical
representation format [T3GFT]. Along with the Executable TestteSYETS)
corresponding to the ATS, the TE contains a TTCN-3 Runtime SySt8RITS), which
handles the interaction of the TE between the TMC, the SA, andAhentities. It may
also contain a tool specific codec system entity (EDS), whiatsésl for encoding and
decoding of the data that is sent to and received from the SUfe/8UT Adapter. The
T3RTS and EDS are described in [T3TRI: ss. 4.1.2.2, 4.1.2.3] only. The TEscamnsal
a Coding and Decoding (CD) entity to do the encoding and decoding oatheTdhe
interface between the TE and the CD entity is called TCh@&face, and it is specified
in [T3TCl: s. 7.3.2].

The TMC entity contains a Test Management (TM) entity, a Commdiandling entity
(CH), the Coding and Decoding CD (CD) entity, and a Test Log{iihg entity. In
[T3TRI] the TMC is actually called as TM, and the TM idl@@d as Test Control. The TM
entity may have a user interface. It handles the overallni@stagement by passing

TTCN-3 module parameters to the TE, and by instructing it to atar stop execution of

24

the test cases. The CH entity enables the distribution of EhevEér several devices (if
required) by passing information of test case events betweeatigtributed TEs. The CD
entity provides the TE codecs, which are used by it to encod&\33 values into

transfer syntax form, when these are sent to the SUT, and toledelata in transfer
syntax form back into TTCN-3 values, when the data is received fthe SUT. The

codecs can be taken into use by using type the encoding attribatedbel@ in Section
2.12. The TL entity is responsible for maintaining test logs, wbatsists of events the
TE notifies it about.

The SUT Adapter (SA) realizes the message- and procedurg-basenunication with
the SUT. It may establish static connections with the SUheabeginning of each test
case based on the used TSI ports, and dynamically durirtgeit omponentsmap and
unmap their ports with the TSI ports (see Figure 2-2). How the SAMsnahere and
how to establish the connections, and what components use which connisctiotssde
the scope of the standards. The realization of the communicatioatiope (e.gsend
receive ,call ,getcall) is divided between the TE (namely T3RTS) and the SA in

the standard in the following way:

“The T3RTS entity should implement all message and
operations between test components, but only the TT
communication with the SUT, i.e. the possible block
component execution, guarding with implicit timers,
exceptions as a result of such communication operat
communication operations with the SUT are to be rea
of a receiving operation) in the SA as they are mos
platform specific manner.” [T3TRI: ss. 4.1.2.2]

“It (SA) is responsible to propagate send requests
the TTCN-3 Executable (TE) to the SUT, and to notif
events by appending them to the port queues of the
operations with the SUT are implemented in the SA.
distinguishing between the different messages withi
(i.e. call, reply, and exception) and to propagate
either to the SUT or the TE” [T3TRI: ss. 4.1.3]

procedure based communication
CN-3 semantics of procedure based
ing and unblocking of test

and handling of timeout

ions. All procedure based

lized and identified (in the case

t efficiently implemented in a

and SUT action operations from

y the TE of any received test

TE. Procedure based communication
The SA is responsible for

n procedure-based communication
them in the appropriate manner

In short, the SA handles the actual interaction with the SUT, wherstrequested by the
TE or initiated by the SUT, and it also notifies the TE abowytiacoming events coming
from the SUT (messages, function calls). The TTCN-3 semanticeromunication is
handled by the TE, meaning that test case components are blodked Ty for example

in receive orgetcall port operations until a matching event is received. The SA is
not aware of the states of the components, but it knows what componggpped with
which TSI port.

25

The Platform Adapter (PA) realizes the external functionstatements of TTCN-3, and
it provides to the TE a timer service. When an external functidinstatement is

encountered during execution of a test case, the TE requests tioecBIthe specified

function. Similarly, when a timer is created, started or stoppeal test case, the TE
instructs the PA to do so. When a timer expires, the PA notifiesTE about this.

Because the used TTCN-3 tool might need timers in its ownemmgahtation, it may

provide the possibility of using its own timer system to handlectes# timers, instead of
having to implement the timer services in the PA.

3.2 Overview of TTCN-3 Runtime Interface

TTCN-3 Runtime Interface consists of two sub-interfaces. drfeebetween the TTCN-3
Executable (TE) and the SUT Adapter (SA) is called triComnatioic interface, and the
other one between the TE and the Platform Adapter (PA) lsdctlPlatform interface

(Figure 3-2). These interfaces are specified in implementdanguage independent
manner in CORBA Interface Definition Language, but the standacdgives concrete C
and Java language mappings of the interfaces. In addition toGentnunication and

triPlatform interfaces, the standard specifies a data auerfwhich is a collection of data

types used in the two interfaces.

The TRI interface is specified as a procedure-based inteiVast. of the operations the
interface provides are implemented by the SA and PA, and cajldiebTE. These
operations along with their corresponding TTCN-3 Core Languatenstats are listed
in Table 3-1. The first column specifies a TTCN-3 statementtl@decond column lists
the resulting TRI operation(s). The operations provided by the TE aledl by the SA

TTCN-3 Executable (TE)
S QT E———— TRI
triCommunication triPlatform
SUT Adapter Platform Adapter
(SA) (PA)

"Function and message based communication”

System Under Test
(SUT)

Figure 3-2: TTCN-3 Runtime Interface (TRI).

26

and PA are listed in Table 3-2. The standard specifies the faljprequirement for TRI

operation implementation:

Each TRI operation call shall be treated as an atom
entity. The called entity, which implements a TRI o

the calling entity as soon as its intended effect h
operation cannot be completed successfully. The cal
implementation of procedure-based communication. Ne
shall block after the invocation of an external fun

its return value. [T3TRI: s 4.3]

ic operation in the calling
peration, shall return control to
as been accomplished or if the
led entity shall not block in the
vertheless, the called entity

ction implementation and wait for

This prevents the blocking of the caller, meaning that if the hEppens to be
implemented with a single execution thread, the whole test casg deecuted does not
halt when one of the test case components for example calls &8ttibn, which might

never return in the case it behaves erroneously. A test case compaealso want to

continue its execution without waiting for the function call to return.

Table 3-1:Correlation between TTCN-3 statements and TRI @j&r invocations [T3TRI: s.

5.1.3, Table 2, with additions]. Calling of the ogions marked with a * depends on the

parameters of the TTCN-3 operation.

TTCN-3 Operation Name TRI Operation Name [TRI Interface Name
execute triExecuteTestCase [triCommunication TE->SA
triStartTimer* triPlatform TE>PA
map triMap triCommunication TE->SA
unmap triunmap
send triSend
call triCall triCommunication TE->SA
triStartTimer* triPlatform TE>PA
reply triReply triCommunication TE->SA
raise triRaise
(sut.)action triSUTactionInformal*
triSUTactionTemplate
start (timer) triStartTimer triPlatform TE->PA
stop (timer) triStopTimer
read (timer) triReadTimer
running (timer) triTimerRunning
TTCN-3 external function triExternalFunction
triSAReset triCommunication TBSA
triPAReset triPlatform TEPA

27

As it can be seen from the tables, one purpose of the PA is tal@ravimer service to
the TE to realize the timers used in TCN-3 in some platforpemident manner. Second
purpose of the PA is to realize the external function calls caa be made from test
cases. More detailed description of the PA operations is outs&lesdope of this

document.

The following sections concentrate on the TE-SA interface, whicisesl by the TE to
request the SA to realize the TTCN-3 port operations performedgdigst cases. The
same interface is used by the SA to inform the TE about asgages and procedure

operations it receives from the SUT.

Any references to triCommunication and TRI interfaces in oéghis work mean the
interface between the TE and the SA. The operation signatoge in this chapter are
in CORBA Interface Definition Language (IDL).

Table 3-2: Operations provided by the TE and called by theaSd PA.

TRI Operation Name: TRI Interface Name:

triEnqueueMsg triCommunication SATE

triEnqueuecCall

triEnqueueReply

triEnqueueException
triTimeout triPlatform PASTE

3.3 Connection Handling

The operationsriExecuteTestCase() , triMap() , andtriUnmap() are called
Connection Handling operations in the standard [T3CORE: s. 5.5.2]. Wite the
operations the TE tells the SA what kind of TSI is used in thea®ss that is being
executed, and what mappings (port connections) exist between tlkagestomponents
and the TSI component. The SA can use this information to establistclosel

connections with the SUT at the beginning of each test case and dynamicallyiturin

Immediately before starting execution of a test case, theallg the SA implemented

operationtriExecutedTestCase() . The SA receives as the parameters of this

28

operation the identifier of the test case whose execution is ab@tart, and the port

identifiers of the used TSI component:

TriStatusType triExecuteTestCase(in TriTestCaseldTy pe testCaseld,
in TriPortldListTy pe tsiPortList)
[T3TRI: 5.5.5.2.1]

The SA can establish predefined connections for the TSI ports based on the port tist, but i

does not have to.

Mapping of a component port with a TSI port results in the TEngalhe TRI operation
triMap() . This operation tells the SA that the specified ports are now mapped together:

TriStatusType triMap(in TriPortldType compPortld,
in TriPortldType tsiPortld)
[T3TRI: s.5.5.2.2]

From theTriPortldType the SA can extract name and type of the port, and identifier
of the component that owns it. The SA can use this information &blisst a new
connection with the SUT, and to select the right established cammeshen the

component sends a message or performs a procedure operation via this port.

Similar to thetriMap() , triunmap() is used by the TE to inform the SA that a
mapping between a component port and TSI port has been removed, asltha the

execution of the TTCN-Bnmap statement.

3.4 Message-based Communication

The message-based communication operations consist triSend() and

triEnqueueMsg() operations.

When a TTCN-3send statement is executed in a test case, the TE reqhestAt to
deliver the sent message to the SUT. This is done by the TEalipng the

triSend() operation, which is defined as:

TriStatusType triSend(in TriComponentldType compone ntld,
in TriPortldType tsiPort Id,
in TriAddressType SUTaddr ess,
in TriMessageType sendMes sage)
[T3TRI: .5.5.3.1]

29

As the parameters of this operation the SA receives iderifitre sending component,
the TSI port via which the message was sent, SUT address itifmmnfgoresent in the
send statement (address type is explained in Section 2.7 Types ands\Vahek in
[T3CORE: s. 8.6]), and the message in encoded form. The SA cameusamtponent and
port identifiers to choose the right connection, that might have béanligised after the

triExecuteTestCase() or atriMap() operation.

When the SA receives a message from the SUT, it can forwtardhié TE by calling the
operationtrienqueueMsg()

void triEnqueueMsg(in TriPortldType tsiPortld ,
in TriAddressType SUTaddres S

in TriComponentldType component Id,
in TriMessageType receivedM essage)
[T3TRI: s.5.5.3.2]

By using the mapping information the SA has stored duringxecute-
TestCase() andtriMap() operations, it can decide which TSI port and component
identifiers to use, i.e., via which TSI port to which componerttoufd send the message
that it has received. It should be noted that the port identifigtoftld) used in the
operation identifies a TSI port, not the component port that is rdapjile the TSI port.
Because only one port of the component can be mapped with a certaorT &l a time,

the TE knows to route the message to the right component port ([T3CORE2]

specifies the allowed connections).

When the SA calls thé&riEnqueueMsg() operation, the TE notifies internally the
receiving component, which might be blocked ateeive or alt statement, about
this new event. There is no operation called “triReceivea) correspond with the
TTCN-3 port operatiomeceive |, thus the execution of thheceive statement in a test

case cannot be observed at the TRI interface.

3.5 Procedure-based Communication

The procedure based communication operations consist of the opetaGarif) ,
triReply() , triRaise() , which are called by the TE and implemented by the SA,

and of the operationstriEnqueueCall() , triEnqueueReply() , and

30

triEnqueueException() , which are called by the SA and implemented by the TE.
Like with the TTCN-3receive statement, there are no TRI operations such as
“triGetCall(), triGetReply(), triCatch()”, since theaEnqueue *() operations are used

to enqueue new received events to the test case components.

ThetriCall() , triReply() , andtriRaise() are called by the TE when in test
case a component executes the corresporahtig , reply orraise statement. The
SA should then realize these procedure operations at the SUTt Gleould call a SUT
function, or pass a return or exception value to a function call when the SUT idéhe cal
All these TRI operations are very similar. The TE telithvthe operations the identifier
of the component that executed the statenerhponentld), from which TSI port the
request comes from ts{Portld), optionally a SUT destination address
(SUTaddress), and identifier of the SUT function that is the target of diperation
(signatureld). In the case afiCall() andtriReply() , a list of used function
parameters is also presenpafameterList). This parameter list specifies the
parameter values and their parameter passing mode, which @an bet , or inout
depending on the direction in which the parameter passes data (ifitm¢kien, out of
the function). All the parameter values have been encoded by theagsdsystem, thus
the SA does not need to know their structure or to do any encodirgeaading. In the
triReply() operation, there is also an additional parameter that spettiBeseturn
value of the function. The operatitniRaise() specifies only an exception value and

no parameter values.

The signature of thiiCall() operation is shown below:
TriStatusType triCall(in TriComponentldType compo nentld,
in TriPortldType tsiPo rtld,
in TriAddressType SUTad dress,
in TriSignatureldType signa tureld,
in TriParameterListType param eterList)
[T3TRI: 5.5.5.4.1]

In the opposite direction, when the SUT calls a function whose ingpition is within
the test case, or it returns or throws an exception from a dancéll that is made from
the test case, the SA notifies the TE about this event by usitigghqueueCall() :

triEnqueueReply() , and triEnqueueException() operations. These are

31

again very similar to each other, so only the definition ofttitgnqueueCall() IS

shown below:

void triEnqueueCall(in TriPortldType tsiPort Id,
in TriAddressType SUTaddr ess,
in TriComponentldType compone ntld,
in TriSignatureldType signatu reld,
in TriParameterListType paramet erList)

[T3TRI: s.5.5.4.4]

When the SA somehow catches a function call made by the SUE (tbeld be a thread
waiting for function calls), it passes the information of the fiamctall to the TE by
using thetriEnqueueCall() , which has parameters identical to its counterpart
triCall() . Like in the case dfriEnqueueMsg() , the TE can determine the right
values for the TSI port and the component identifier required in the
triEnqueueCall() , by using the mapping information it has stored during the
triExecuteTestCase() and theriMap() operations, along with any information

it has on the connections it has established with the SUT.

32

4 GENERAL PURPOSE SA

A new concept called Connection Manager System is specifiedgrchiaipter. It is a
framework for such a SUT Adapter, that provides simultaneouslgréift kinds of
connections with the test target. A connection can be of any kiodnibe a simple TCP
over IP connection, or it can be a connection that performs libraggiduncalls at the
SUT.

The framework has the following properties: Connections can beblisbed and
controlled from TTCN-3 test case level during test caseuta. This can be done in a
uniform way, meaning that there is a fixed set of operatiotts wiich all the different
kinds of connections can be handled. The system does not limit the nuntitereint
connections to the number Test System Interface ports. A testcoasponent can
configure a connection via any TSI port by using any connectionsnaalependently of
any other connections that other components might have configured \sarttee TSI
port. All the control information is separated from user data, mgathat the type
definitions of the tested protocol or function parameter types comba@xtra fields. New
connection methods can be added easily into the system, and thegveatheir own

parameters, which affect how connections are established and controlled.

4.1 Motivation and Background

The purpose of the SA is to provide means for the TE to commumidhtéhe SUT. As
it was described in the Chapters 2 and 3, TTCN-3 provides both measdga-ocedure-
based communication operations between the TE and the SA. When the reoatiom
is message-based, from the TE to the SUT direction, the Sikesa@m instruction from
the TE to deliver a message from a TE component to a cecz@ssapoint at SUT. In the
case of procedure-based communication, the SA receives an iosttoctall a function,
or to reply to function call, at a certain access point at the SUT.

In both cases, the SA has to transfer instructions from the TE to an ent®yJat service
access point (SAP), which finally performs according to theuosbns. The purpose of

the SAP entity is for example to pass messages to the SU®, aall SUT interface

33

functions and to pass return values to them. Depending on the caSAPtlentity can be
seen either as part of the SA, or as a part of the SUT. Inatteetbe SUT is a TCP/IP -
capable WWW server, then the SAP entity is the TCP/IP imgi¢gtion of the SUT,
with which the SA establishes TCP/IP connections. If the SUWilfusiction library, then
the SA has to implement the SAP entity, which calls theddstections according the

instructions received from the TE.

Implementing an own specific SA for each SUT is unreasonabl@any cases a similar
access points with the SUT exists, or they can be implementiedut great effort. An
SA implementation that knows how to use TCP/IP can be used witlSdiy that
understands how to receive and transmit messages over TCP/IP. mittSA Frame
Relay implementation can communicate with a SUT with a FiRalay access point. In
the case of testing library functions, a dedicated protocol can dgk tasinstruct the
receiving entity at SUT-side of the connection to perform functialfs or to receive

them.

These different SAs can be integrated into one super-SA, which psabieie combined
functionality in one package. The benefit of this is that during desitagt case it is
possible to establish connections with the SUT with more than onerediffe
communication means, which gives the test case designer matenfream what kind of
test cases can be written. To make the usage of all theedifisonnection means easy to
the test case writer, the super-SA should provide a singleromiontrol interface for
them. To make further development of the super-SA feasible, itgndeas to be such
that one can add new connection means to the system without causiggschamany
existing TTCN-3 test case code. At the SA level it has to suppgistration of different
kinds of connection means into the system, without making any assungidwasv they

work internally.

Figure 4-1 shows a snapshot of a possible test configuration, in vkei¢implementation
Under Test (IUT) is a module having a network interface visibleside the SUT, and
internal procedure interfaces for communication with the other-i&téfnal modules.
The super-SA contains functionality for establishing both network cdonsctind

procedure connections at the same time. The network connection eai @@-socket

connection with the IUT module, with which the network-side behaviouheflt/T

34

TE SA SUT

Component with Network ¢ Network interface
network p-| CONnection <

counterpart means JUT module

behaviour

A
4

T Procedure Procedure

Component with Procedure interface 1 interface 2

girm';:gg:?l p| Means -t (Missing module) | Internal module

behaviour

A
4

Figure 4-1: Two different connection means during a test case

module is tested. In addition to this, the procedure connection can beousrit that
the tested IUT module performs correctly with the SUT module, &ghmplementation a
test case component imitates. The test case could be suclisthatmhessage is sent to
the IUT module via the network connection. As the result, the IUE @a certain
interface function, whose call is observed via the procedure conndatitie. test case, it
is then checked that the IUT called the right function with tgbkt rparameters, after
which a return value of the function is passed back to the IUT modulheiprocedure

connection, and the IUT can continue its execution.

4.2 Connection Manager System Concept

By using the Connection Manager System (CM System) introdimcéds section, the
SA can maintairtconnections during test cases. The concept of the system is presented in
Figure 4-2. The CM System is a subsystem within the SA eiitity term SA is used in
this document to reference to that part of SA, which implement3Rienterface and
any other functionality that is not implemented by the CM SysfEhe CM System
consists of a CM System Component, Connection Manager Classe€I@gses), and
Connection Managers (CMs). Interfaces between the Test @aspo@ient and the CM,
the SA and the CM System Component, the CM System Component and tkda€d
and the SA and the CM entities are specified in Chapter 5 and iméigp®. The greyed
out entities in the figure provide optional helper services, andghgbose is only briefly
discussed in this work. CM-prefix is omitted in the text whearegfcing to the class and
system entities, when this causes no ambiguity. The presentatios figure is abstract,
meaning that in a real implementation each element can eepreslass, but they do not

have to.

35

The termconnection has different meanings in this document depending on the context
where it is used. When the CM System Component is requested ta apermunication
channel for a certain test case component by using some CM, @lad the system
component manages to pass the request to the chosen class, thdrefbwhatf of the

CM System Component @nnection has been opened. This does not necessarily mean
that a transmission protocol link has been established with thet. t&i@chconnection is
managed by a Connection Manager, which the test case component may instruttao ope
connection with a certain SUT point, or to acceginnection requests from it. If the
transmission protocol used by the CM is invisible to the test casgwonent, i.e. the
component receives the data payload only and no status informatiodimggie used
protocol, then theconnection between it and the SUT as seen by the component is
present, whenever the component may assume it is valid to sen@xpect a message
from the SUT. This is irrespective of the state of the trassiom protocol, which is
handled by the Connection Manager. If applicable, the Connection Managepera a

new connection between it and the SUT for each message, and this can be intosibée

test case component.

controls < maintains a connection for / delivers all the received TRIMessages to

i
Test Case communicates with
Component * * SutSap
0.. 0..
A 1.
contains
1
<« maintains
. 1.% 1 0.* TRI Message
— TE Connection CM Detector
0.
1 1.
communicates with TRI operations A
provides and controls
provides TRI component and port informationto » uses p
1 ‘ 1
uses and p . .
controls < registed into 0. *
CM System TRI Message
— —
SA 1 1 Component 1 1. CM Class Detector System
usesand P
controls
uses to encode N
CM configuration can be a sub system
uses to be able to handle
messages e can be a sub system
v class specific types » |
. The services within
Gef:::;::e(gaec CM Class Codec Codec for a class this greyed-out area
System System spesific type are optional

Figure 4-2: Relationships between the entities in the Conaecklanager System concept in UML
notation. Note: This is an abstract representatfdhe system; the class entities in a real impletatéor

can be different.

36

The purpose of the Connection Manager is to take care of a connectiog dari
existence, starting from the establishment of the connection teaitdlown procedures.
Once the connection has been opened, the Connection Manager handlededdithef

the protocol (or protocols) that forms the transmission means betweist case
component and the SUT. Every Connection Manager belongs to a certaiaS$/ and

they can be seen as instances of the class or as entitiedledrity the class. Each CM
Class provides certain kind of connection means, or other servicegediorcase

components, and they all offer the same interface to the CMnSenponent. The CM
System Component has an interface with the SA, which allows Hssed to be
registered into the system, and via which the SA can use theeseprovided by the CM

System.

Test case writer configures the CMs via a Test Systenmfdoee port that has been
selected to be one of the control ports. All the messages threc8Ares via the control
port are interpreted as control messages to the CM System Compgbr@enon-control
message is sent via the control port, it is considered as carapéssage by the
recipient. There can be more than one control ports in the systais i§ applicable. In
addition to these CM System configuration ports, there can beatedi ports for
configuring the SA itself, but that feature is outside the safghis document. All the
other TSI ports are called data ports, since all the messaggsed from them contain
encoded data, that the SA delivers to the SUT by using the CM System.

When a component in the TE wants to send a message to a certaad8td$s, or to
make a procedure operation, it executes a TTCN-3 communicatiometdtée.gsend ,
call) with the following results. The TE calls the TRI communicatmperation
(triSend() , triCall()) corresponding to the communication statement to request
the SA to perform according to the statement. Next, the SA cotssauequest from the
parameters of the TRI communication operation, and passes it &ystem Component
to be handled. The SA does not have to know anything about CMs, clasgesr or
configuration; it only sees the interface provided by the Sy§&temponent. Once the SA
has passed the request to the system, it returns from thepERrition call, without
having to wait for the request to be completed by the system. yidten$ Component
passes the request to the right CM of the used CM Class, whally ftransmits the

37

message to the SUT end-point of the connection, or performs a proopéuagion such
as function call. Depending on the implementation of the interfacetibns, the CM
System Component passes the message either directly, or @aiti@ass, to the right
CM. The chain of events in sending and receiving direction is show in Figure 4-3.

In the receiving direction the events are simpler: The CMivesea message or
procedure operation from the SUT. After this it requests theoTéhtjueue the message
or the procedure operation to the port queue of the right component by aising
triEnqueue *() operation of the TRI interface. These operations require as
parameters the identifier of the receiving compondmiComponentldType) and
identifier of the TSI portTriPortld) with which the component’s data port has been

mapped. The CM can query for this information from the SA.

Depending on the transmission protocol used by the CM, it is ¢ithiat or not for the
CM to determine in message-based communication when the datedefrem the SUT
should be enqueued to a component. In the case each transport protocalviriys
contains data for one test case level message, then the engusuesny, since it can be
done after each received transport protocol PDU. If a singlepwenBDU may contain
several encoded TTCN-3 messages, or if the messages meyiarseveral transport
PDUs, then message detection is needed. This is because the wwniy fhich the CM
can pass the received data to the TE is the formridMessageType (Section 3.4
shows the operation signatures), which has to contain all thelemcata that is needed
by a decoder to decode a single value. It is not possible to pastdaeveral values
simultaneously, or to append more data to the already enqueued dagapassed data
does not contain a single value in its encoded form, then its decoding will fail and the data

is lost.

f
TE SA CM System CM Class c™M SUT SAP
Component

Sending of a message

TE - CM SUT SAP

Receipt of a message

Figure 4-3: Send and receipt of a message.

38

TRI Message Detector System is an optional system usdtelpohnection managers to
identify messages and their boundaries from the receive dataaghe SiIRlI Message
Detector detects message boundaries by a certain generavhide,is either a generic
rule or specific to the messages that are expected be dewethe SUT. The message
detectors are independent of the used transmission protocol; thegeanky stream of
payload data. The detectors are registered into the TRI MeBsdgetor System, which
offers a single interface via which the detectors can be usedCdimeection Manager
may use one or more different detectors on the receivedatldtee same time. The
detector system can be seen as a rough decoder system, edodesithe received data
just enough to be able to determine the message boundaries. The caapbetiag is
done later by the TTCN-3 codec system. Further specificatiorRbMMessage Detector
System is outside the scope of this document.

In the following example detection is needed. A Connection Managemlausamection-
oriented protocol like TCP as the transmission protocol. It is Wattiat the connection
is kept open during the test case so that several TTCN-3 legshges can be exchanged
without having to re-establish the connection after every messhgernitoded messages
contain length field as the first field, so the Connection Manege use a TRI Message
Detector that decodes the length field and keeps track ondbiwed byte count. When
enough data has been received for a complete test case levayjen@ssalue of a certain
TTCN-3 type), the detector notifies the Connection Manager aboutrnhisder that the
Connection Manager knows to use a specific message detect@sttbade writer has to
configure the CM to use it. This can be done for example aintieevthen the connection

is opened, by giving the CM a list of used detectors as open-request parameters.

CM Class Codec System is optional system, which can be usedlement generic
codecs for the CM System. The connections with the SUT aregooedi with CM
System Component specific configuration-message types, which in omtairc CM
Class specific types (5.2 Connection Interface). When a confignratessage is sent to
or received from a CM, a codec associated with the configuratessage is called, and
this codec should be able do the encoding and decoding of the whole mebsagaddc
could be a generic one, or there may be an own codec for edahk obnfiguration-

message types. Because it is allowed that each CM Clagsuseaany kind of class

39

specific configuration parameters, the configuration messag#ain these class specific
parameter values encoded in a class specific manner. Withouiedcgeodec this is a
problem, for the reason that one should be able to add new CM Class#islstem
without the need to rewrite existing code. If new CM Classa® wdded into the system,
then in the case of a non-generic configuration-message codec onehawveltb rewrite
the codec to contain coding instructions for the types of the resged. For a generic
codec approach the CM Class Codec System provides methods for thyurediain-
message codecs to query for class specific codecs by typéiederdand by encoding
attributes, when they are unable to do the encoding on their own. Tlsesplasific
codecs can be registered into the CM Class Codec Systdm aame time when the
classes are registered into the CM System, or at sometwotieewhen the tool specific
initialization operations are done (if such exist).

4.3 Requirements

The CM System has requirements at TTCN-3 core languagd, land at the SA

implementation language level.

At TTCN-3 core language level is the user, to whom the sydtemdbe easy to be used
and hard to be misused. The user should have access only to the coafiquaedmeters
of connection, and not to any meta-data that is meant to be usedligtey the system.
In addition to this, any configuration data should be kept separateaingnuser data,
meaning that when the user tests a certain protocol, the tjipéides of this protocol
contain only the message fields of this protocol; there are na eoditrol fields added to
these type definitions. This allows (or forces) the CM Systerdeliver the user data
between test target and the test case components transpavéhtiyt the need to strip
away and add control data to every sent and received messdgthe Adlifferent
connection types should be configurable using the same methods, and @ bkoul
possible to query status of the connections when required. Addition otomvection
means to the system should not affect the functionality of =isyireg test cases or other

connection means.

40

At the SA level, the system should provide the possibility to addtrasport protocols
into the system easily, without having to do major code modificatioiosthe system.
The CM System may not assume anything about the implementdtiba CM Classes.
The user (or test case) should be automatically reported aboutsguadions, such as

when a connection with a target is lost, or the target cannot be reached.

In the terms of performance, the CM System implementation shoulas blegght as
possible; it should only cause minor overhead to the TRI-operationifgn@loncrete
performance requirements depend on what is being tested, and wde&tokitransport

protocols are used.

4.3.1 Connections

In Figure 4-4, two test case components can be seen communiagtinépur SUT
addresses ovehree data connections. Component X has its data port Port 1 mapped to
TSI Port 1. This connection is handled by a connection manager CMAdh Welongs

to CM Class A. Connection Managers of this class use a protomprtealize at the SUT

the test case statements, that are executed using the component The same
component has another connection via Port 2 to another SUT addressorrestion
belongs also to Class A, but it is handled by the manager A2, indapbniilom the first
connection. Component Y uses a single port, Port 1, to communicate witthfferent

TE TRI csl SA SUT
System Component CM System
TSI CcCl
CM Class A
Component X
TSI Port 1 CM A1 Protocol A
% ‘!'
Port 2 s T |
or . ER I I __,’ ® “T==ea.] ProtocolA
. &,
\ TSI Port 2 ,’ CM A2 y SAP 2
-- i ;
. . \J| [ommmeeeese y
\ s : [
Component Y 7 Iy, Protocol B
o\ - N — M CI B Protocol B
‘ Port 1 k *| TSI Control Port - \) G SAP 1
\ A 1]
A CM B1)2) eintnieintaet . Protocol B
\--:2:::::‘ 4|
H) Dbl DL T PR 5

-..=map-statement routes csiConnld routes —— Data connection
= == (csiClassld, cciCmld) pair routes = ==e=== TriSutAddressType may route = —— Control connection

Figure 4-4. Connections and identifiers.

41

SUT SAPs. This is possible, because the Class B connection managsr
sutAddresses to identify two different protocol-B destination addresses. CBs
CMs could be servers, which accept incoming connection requests antogiatone or
more SUT addresses, which do not have to be known before the testtiasmay be
the case when the protocol B is TCP or UDP, and the operatibgnsyd the SUT
assigns any free port addresses to the connections establishet frbenprotocols used
by the CMs do not have to be network protocols. They can be any mdikedanction
calls, with which the CM realizes the intended effect of th€N13 Core Language port
operations at the SUT.

In the same figure Port 2 of Component X and Port 1 of Component Y share the same TSI
port, but both communicate with the SUT over different protocols. Itssiple to choose
the used CM Classes independently from the TSI port configuratiis nieans, that it is
not a prerequisite to have a TSI port of certain name or typéieddn a test case to be
able to use a certain CM Class. The test case designechnage to configure all the
TCP connections via the same “tcp™-titled TSI port, but this is not required bystesrsy

Every component mapped with a TSI data port has at least one qootrolvhich is
mapped with a TSI control port. This control port of the component id fze
establishing and maintaining the data port connections of the comp®hentessages
sent by the component via the control port are received by a CMhandessages the
component receives from it are sent by the CM, hence, therdiiglirectional control
connection between the component and the CM. A single control port caredéous
control several data connections, which are each handler by an owasCi§lthe case
with Component X in the Figure 4-4. The CM System Component knows doaute

the control messages to the right CM.

The data port to be configured is identified by a value of §@eiPortld , which is
present in every configuration message that is passed betweemmonent and a
connection manager (Section 5.2, Table 5-2, Figure 5-3, Figure 5-4)valtes contains
the name of TSI port (text string), with which the data porthef component has been
mapped; it is not the name of the data port of the compo@érgiPortld uniquely

determines the data port of the component, because accordingstartiard [T3CORE:

42

s. 8.2] only one port of a component may be mapped with a certain TSAtpotime.
Also, when a message should be delivered to a certain port of a compotierat
TTCN-3 Runtime Interface communication operation (Section 3.4), thasgpoientified
by the name of the TSI port, with which it has been mapped. The TE takes cargrd pas

of the message to the right port of the component.

Each component may only configure its own data connections. Tkenrdar not
allowing one component to configure a connection via a port of another component is that
the components do not have names or identifiers, which could be used to daeiress
both at the TTCN-3 language level and at the SA implementation ktviie TTCN-3
language level a component does have component reference thag séored into a
variable of the type of the component, and which can be used to addresgpanent

within a test case, but this reference value cannot be passed to the CM \BggteniTRI
interface. This is for the reason that the TCI interface doégrovide operations for

encoding and decoding of the values of the component reference kind.

The components may not share connections by simply mapping their ovwitbcat TSI
port, which is already used by another component. If a componentohiguced a
connection of a certain kind via a certain TSI data port, and anoth@ooem maps its
data port with the same TSI data port, this second component cannobrsesudive
messages or procedure operations via the TSI data port, until thved ssmmponent has
performed its own port configuration operations. When the SUT sendssageeto the
TE via a TSI port, which has been mapped with several components, but only one of them
has configured the TSI port, then the received message isdaaleto the component
that has done the configuration. If they all want to receive agessvia the TSI port, they
have to do their own configuration. This restriction comes from teegaehoice, that
each component may configure an own connection independently via angoftSl
irrespective of any other possible connections that use the sahpoiT. If it is required,
that several components mapped with the same TSI port share ¢ne@amection, then
this functionality has to be provided by the used CM Class. thdase, each of the
components may do the configuration by instructing the CM Claagsthey want to join

a shared connection.

43

The port of the component used for a data connection must be mappeal T8I data
port, before the connection through it is attempted to be configured coateol port.
This is required to avoid the situation, in which data is receireed the SUT right after
the connection has been opened, and it is directed to a component détatgoaes not
been mapped to a TSI port. This does not necessarily mean, thas datamatically
started to be received from the SUT when a new connectioreredplt depends on the
used CM Class and its configuration, whether a separate corgsslages exists, with
which one can instruct a CM to start and stop sending of theveeceiata to the

component.

Once a component has mapped its control port to a TSI control port, acohfigared a
connection for a data port, it should remain mapped to the control ptinefbfetimes of
all those connections that are controlled via the control port. Bethigse2quirement
cannot be enforced, the SA should instruct the CM System Componenintoater all

the existing connections the component has that are maintained aidral port, when
this control port is unmapped from the TSI control port. In Figure 4s4nti@ians, that if
Component X unmaps its control port, then the data connections via itslpanis 2

become automatically terminated.

When a component does not need anymore a data connection, it should instruct the CM of
the connection to close the data connection. Because this requiremeutt lna enforced,
the SA should instruct the CM System Component to terminate the data connection, whe

the related data port of the component is unmapped from the TSI data port.

The SA does not need to know which TSI port or ports are used foort®lc The CM

System Component performs the identification of the ports on the behalf of the SA.

4.3.2 ldentifiers

Each connection is handled by a Connection Manager, which belongsettaia €M

Class. Every class has to provide at least one manager thdtandie at least one
connection at the same time, but there can be several managensgrconcurrently
within the class, serving several simultaneous connections. Itdesign choice of the

class how many connections the class supports at a time, artdewlb@e manager

44

handles them all. Seen from outside the class, each connectiorays dandled by an

own manager, which has a unique identifier within the class.

All the connection related operations the CM System Component prouvides SA use
an identifier calleatsiConnld . It can be extracted from th&r{ComponentldType
componentld , TriPortldType tsiPortld)—pair, which is present in all the TRI
communication operations (Sections 3.4 and 3.5 describe these operatisnjlemtifier

is used by the CM System Component to uniquely identify connectionsaltithe CM
System Interface operation calls done with the sesiteonnid as a parameter operate
on the same connection. It is worth noticing, that dbmponentld identifies atest
component, but thetsiPortld identifies a port of théest system interface component.
These types and their contents are shown in Figure 4-5. Types iofteheal fields of
TriComponentldType and TriPortldType are not shown in the figure, since
these depend on the used language mapping (C, Java) of the TRI ént&tactypes

used withincsiConnld are specified in Section A.1 CM System Interface.

ThecsiConnld identifier is now defined to be the tripleofnponentinstString :
portNameString , portindex) (see Figure 4-5). TheomponentinstString

is the string stored in theomponentinst field of TriComponentldType
componentld in the ANSI C type definition of TRI language mapping. In Java
mapping, it is the value received witgetComponenld() method of the
TriComponentld interface.portNameString andportindex are the fields of
TriPortldType tsiPortld

Within the CM System ComponentsiConnld is mapped to the identifier of the
Connection Manager, that is handling the related connection. This CNfiefestcalled
cciCmld , and it is unique within a CM Class. A CM Class identifesiClassld , is

TriComponentldType componentid CsiConnld csiConnld TriPortldType tsiPortld
/‘y‘ String componentinstString ‘ TriComponentldType complnst
‘ complnst }’
‘ String portNameString
‘ compType ‘
‘ CsilntegerType portindex ﬂ portName ‘
ﬂ portindex ‘

Figure 4-5: Structure otsiConnld

45

used together with theciCmld to uniquely identify a CM between classes. The classes
are registered into the CM System Component with their urtsjassid identifier,
whose value is the field name of the class in the TTCN-3 union type
Ci <OperationName >Params: E.g., a variableCiOpenParams class is a union
value, whose different field names could becket , .frameRelay , and .atm

Each of these serves as ttsClassld identifier of the related class. This is explained
further in Section 5.2.2.

The TriAddress sutAddress value, which is present in the TRI communication
operations as one of the parameters, is not used gsifiennid . The reason is that its
TTCN-3 core language level formgaddress value, is optionally present in the
communication operations. If it was used in gds&€Connld , then it would have to be
either used, or not used at all, in all the core language level cowatiani statements
(call , send) concerning a certain connection, because the CM System Component
maps the value otsiConnld to the identifier of CM that handles the connection
(explained later in 4.3.3 Information storage). Its usage would als@licate error
handling in the situation in which connections are closed improperly, Eedaissnot
present in the triUnmap() operation (A.1.2 Operations: csiConnTerminate).
Nevertheless, thaddress value is always passed transparently by the CM System
Component to the CM Classes. Sincedbh€onnld is not dependent on the usage of
the address value, the address can be used for example only whercannegtion is
opened, and it may be omitted in all the operations after th&isifist permitted by the
used CM Class. The CM handling the connection may useaddeess values to

address several elements within the SUT by using them as sub-connectidierdenti

4.3.3 Information storage

The CM System and the SA have to maintain information on the connedtiomsst be
know how components are mapped into Test System Interface, so tegstd® knows
where the received messages should be delivered to. In order @vitBgstem to know
what CM Classes are present in the system and how they cacdssed them, a class
register is needed. When data should be delivered to the SUT tibenkisown to which

connection the data belongs, and what CM is handling the connection. For each

46

connection, it must be known what is the SUT end-point address of therassplort
protocol, and what is the state of connection. One way to stoieftimmation is shown

in Figure 4-6, which is explained in the following paragraphs.

The SA maintains the mapping information of the Test Systemfdnge(TSI). During
the triExecuteTestCase() operation it stores the port list of the interface and
removes the old one if such exists. In ti®ap() andtriUnmap() operations it
updates a register callagiMap to contain the information which component port is
currently mapped with which TSI port. As the parameters oftiMap() , the SA
receivesTriPortldType compPortld , andTriPortldType tsiPortld . From
the compPortld it extracts the identifier of the componentriComponentld
componentld , from which a component identifier string can be extracted. Rham
tsiPortld the SA extracts theortName andportindex values. Together with the
component identifier string, theortName andportindex form acsiConnld as
explained in Section 4.3.2. By using tbEConnld value as the key, the SA stores the
(TriComponentldType componentld , TriPortldType tsiPortld)—pair
into tsiMap . When a CM has to performtaEnqueue*() operation (Chapter 3), it
gueries the parameters of this operation fromtdiglap data structure by using a

csiConnld as the key. The relationship between the types is illustrated in Figure 4-7.

TTCN-3 core language level
TE
1 Connection Interface (CI)
Component -t i > CcM
A A
4
Mapping Interface (MI)
|
|
(TRI) —— ‘ (Class internal interface) ———
) y CM Syst C t y
SA ystem Componen ‘ CM Class
. -l handlerMap - »
tsiMap | controlMap |
cmClassReg
CM System Interface (CSI) CM Class Interface (CCI)
SA implementation language level (C, Java, other)

Figure 4-6. Required interfaces and information storage inGMeSystem.

47

The reason why the component and port identifiers are stored intsiNtag which is
located in the SA, instead of passing own copies to the CMs ¢kdt them, is to keep
their values always valid. A copy of eofnponentld , tsiPortld)—pair stored into a
CM would become invalid when the specified component unmaps its own qaortHe
specified TSI port. The standards leave it open what happengiErgueue*()
operation is called with out-of-date values, thustiilelap is used to make the system
portable between different TTCN-3 tools. Its usage prevents thdrdr altering
mapping information with thé&riMap() or triUnmap() operations, when a CM is
about to use a certaircqmponentld , tsiPortld) —pair to send a message or
procedure operation to a component. The usagesibfap is further specified in
Appendix A.3.

The CM System Component maintains a class registeGlassReg , which contains
the information what CM Classes are available to the systetchhaw the CM Class
Interface functions implemented by them can be called. Each cdaskave their own

implementation of the CM Class Interface functions, but they all sharertteeisterface.

In addition to the class register, the CM System Component cordaiasa structure
handlerMap , which is used by the CM System Component to pass all the
communication operation requests from the SA to the right CMs. ddis structure

contains mappings fromasiConnld to the pair ¢siClassld , cciCmld), in which

TriPortldType triCompPortld TriPortldType tsiPortld
Parameters of triMap() and
triunmap() operations. I
TriComponentldType complnst P—1 TriComponentldType complnst

- __ -
‘ Instance string ‘ Parameters of risend(), ‘ Instance string ‘
triCall(), etc.,and

triEnqeueue*() operations.

‘ portName ‘

A portName ‘

‘ portindex portindex ‘

l

Mapping data

{siConnld csiConnld

‘ componentinstString

TriComponentldType complnst

‘ portNameString

TriPortldType tsiPortld

‘ portindex

This key-value -pair is stored M
into tsiMap . ‘

T

"Key" "Value”

Figure 4-7: The information stored itsiMap data structure and the relationship betv

CsiConnld |, TriPortldType , andTriComponentldType

48

csiClassld is the class identifier of the CM, amdiCmld is the identifier of the
CM, that is handling the connection (see Figure 4-8). cdi€mlids are generated by
the CM Classes, when the CM System Component requests thegat® mew managers
to handle new connections. These identifiers are unique within a tlassuld be
possible to place a mapping data structure similar thahedlerMap within each class,

but then each class would have to implement it, instead of having it done in one place.

Because of the requirement, that the data connections relatedmtr@ connection are
closed when the control connection is terminated, the CM System Compuaentd
maintain a data structure, which contains the information which dataections are
controlled by a certain control connection, and what is the control coomecta certain
data connection. This information is stored into the data strucaliesl controlMap

(see Figure 4-8).

Each CM Class maintains identifiers of its CMs. When the Sydtem Component
passes an operation request along withi@mid identifier to a CM Class by using CM
Class Interface operations, the class knows from the identifish CM should handle
the request.

Each CM maintains information on the connection it is handling. Eithlenaws the
csiConnld of the data connection it is handling and the identifier of tlae control

connection, or it asks them from its class. The CM can usest@ennid to ask from

Data connections of a single component: | tSiMap handlerMap
(SA) (CM Sys. Comp.)
componentld, I ccimere @il | csiClassld,
tsiDataPortld | SSIDEECRTE 71 cciCmid
componentld, |_ 5 csiClassld,
tsiDataPortld [SSIDEIEICITE] cciCmid

csiClassld,
cciCmld

Control connection of a single component:

controlMap
M Sys. Comp.)

/

tsiCtrlPortld [~ csiCtriConnid L]
Stand-alone_: control connection of a single esiNaConnld"
component:

componentld, .

tsiCtrlPortld | csiCtriConnid .;]

Figure 4-8:. Relationship between the mapping data structares the identifiers. Doubleeade

arrow means that the mapping is in both directions.

49

SA the relatedqomponentld , tsiPortld)—pair, which is stored inttsiMap , when

it wants to send messages and procedure operations to a tesbrgement with the
triEnqueue *() operations. When a new data connection is opened (related operations
are A.1.2:csiConnOpen , A.2.2: cciConnOpen), the csiConnld of the data
connection and its control connection are passed the CM Class, wtigim imay pass

them to the CM.

The following summarizes the usage of the mapping data strustuvesh in Figure 4-8:
The tsiMap maps acsi*Connld value to a ¢omponentld , tsiPortld)—palr,
which is needed by the CM when it has to pass a message andupeooperation to a
test case component. Whercg*Connld value identifies a control connection, then
thecontrolMap is used by the CM System Component to retrieve the ideatoifathe
data connections, that are controlled by the control connectionhdimélerMap is
used by the CM System Component to map a data connection idenifidre
(csiClassld , cciCmld)—pair, in order to find out which class and which particular
CM is handling the data connection. In the special case when alocomtnection does
not control any data connection, the identifier of the control conneistiaeed directly
with thehandlerMap . The CM System Component uses tseClassld to find the
right interface functions from itsmClassReg (not shown in the figure), when it needs

to pass a connection related operation to CM of a certain class.

4.3.4 Concurrency

In TTCN-3 Runtime Interface [T3TRI: s. 4.3] it is specified, thhtthe TRI operations,
except the external function call, are non-blocking. With non-blocKing imeant, that
blocking during a TRI operation may not have any effect on thesyss¢m at the test
case level. The non-blocking requirement can be fulfilled by havepgrate worker

threads and a task queue, into which the TRI operations are enqueued.

To make the CM System independent of the concurrency model of the TE
implementation, and of the SA implementation, all the CM Systeerfaue operations
belonging to the connection category (listed in A.1) must be non-bloekidgthread-

safe. All the system and class category operations of Ckéi8yisterface are thread-safe

50

but blocking. They are blocking because they are initialization ewadiziation related
operations. It is wanted that they do not return until their intendittefias been
completely performed, so that the state of the CM System cagudranteed after these
operations.

4.3.5 Operation handling order

When a test case component performs a sending opersgiod ,(call , etc.) on a port
that is mapped with a TSI port, this results in a correspondiigpperation. In TTCN-3
Runtime Interface Standard [T3TRI] it is specified, that age¢kalt of a TE-initiated TRI
communication operation, the SA can act according to the operatisnndt required
that the SUT has experienced the intended effect of the opetatione the TRI
operation returns, thus the operation can be delayed by buffeng & queue. How and
when the operations are handled is outside the scope of the standafdMThgstem
provides the SA the means to handle the TRI operations. afétiation handling order

it is meant the order in which the CM System Component, the Gigs€$, and the CMs,
process the operation request the SA makes to the CM Systenordérsis not self-
evident; it depends on the interpretation of the test system td#eréand on what is

wanted.

On interpretation of the test system interface

The test system interface is an abstract interface, whisbme way provides a mapping
to the real interface(s) of the SUT. It is not specified wlhige abstract interface is
located. It can be though of being located at the SUT, or at trer B&, or somewhere

in between.

If it is assumed that the ports of the TSI reside at the &Jilustrated in Case A of
Figure 4-9, and that a mapping between a component port and a TSbpatthe same
way as a connection between two component ports, then it could be ddbamall the
port operations performed on a component port mapped with a TS| paeeareat the
TSI port in an unchanged order. It would be up to the SA or the CM Systerake sure
the operations appear in order at a SAP of the SUT. Of course,igheargue that the
propagation of messages from a component port to a TSI port does nahdéasame

51

Real test system interface

suT
Transmission means ‘ :
\&/\/) | e H - ‘

Abstract test system interface (TSI)

A)

Component

Real test system interface

SuT
Transmission means
w T

Abstract test system interface (TSI)

B)

Component

TSI port

Figure 4-9: Two interpretations of the location of the TSI.

meaning as when they move between two component ports, and it is soulgHetts of
the used transmission means, but this would make it harder totegiteases in which

the order of events is guaranteed.

If it is assumed, that the TSI ports are at the SA as shdkeiCase B in Figure 4-9, do
the operations now have to be guaranteed to be experienced byTtie tBe same order
in which they are executed in a test case? The answer t@ thad necessarily. If the
communication with the SUT can only be accomplished by using a ctomless
protocol like UDP, and the SUT has been designed and intended to cora@uwver
this unreliable protocol, it would not make sense to build such a mechenicsthe SA,
CM System or the SUT, that ensures unchanged packet order ttarisgission. In this
case, the person who runs the test cases should ensure thatgh@dsion network used

in the test system is simple enough not to introduce any changes to the packet order.

Because the situation B in Figure 4-9 gives more freedom on winhtokitransmission
means can be used, that interpretation is chosen in this documens halaeean that
the operation order is never preserved, but that it can be an opticunaé fehthe used
CM Class.

Operation handling within the CM System Component

Because the test case components or ports have no execution,ptigrityatural that all
the communication operation requests are handled by the CM Systepo@amin the

first-come, first-served manner. The CM System entity doedhane understanding on

52

the parameters with which connections have been configured, thus tteegdhaffect on
the handling order. When the SA has requested the CM Systparftom connection
related operations by using the CM System Interface opergi#ohs Operations), the
CM System may choose to enqueue these operation requests int@mitismay handle
the operations directly, but it may not change their relative owléh the handling it is

meant, that CM System Component passes the requests to the right CM Classes.and CM

Operation handling within a CM Class

The CM System Component requests the CM Classes to perform ¢onnedated
operations by using the CM Class Interface (CCI) as spddifi A.2.2 Operations. The
identifier of the CM that is handling the connection is present isetloperations. The
order in which the CM Class forwards the operation request conceanismgle
connection to a specific CM is the same as in which they bheee requested to be done

by the CM System Component.

However, it is allowed that the relative order of operation ragubst are directed to
different CMs (i.e. do not belong to the same connection) does notmbedoteserved.
This is because a CM Class could provide priority parameterhdoconnections, and
since each connection is handled by an own CM, the priority of the cmmestthe
priority of the CM. Any requests directed to the CMs mayfdrevarded to them in a
manner, which takes the priority in account. This feature could be inskigh-load

situations.

Operation handling between CM Classes

It is not required the classes to preserve handling order overaggehmundaries. This is
to allow the classes to provide any kind of transport means taestre slow or fast, with
or without guaranteed transmission order. If the classes did hawwnmanon
synchronization for preserving the operation handling order, this magtstecproblems
for example in the case, where the buffered operations of a slamection class block

the usage of faster connection class, until all the operations have been handled.

53

Some of the classes may provide mutual synchronization, but thiddhean optional
user configurable feature, unless these classes are meanuseddogether and their

functionality requires this.

Operation handling within a CM

Each CM preserves the relative order of the requests concerncogreection it is
handling, unless the optionalddress parameter of the TTCN-3 communication

statements is used by the CM as a sub-connection identifier.

If the SUT address is used by the CM to identify sub-connectioas,it depends on the
used CM Class and configuration parameters of the connection in whieh the

operation requests are handled.

With the handling within a CM it is meant, that the CM int&agith the SUT when the
requested operation requires this, but it does not say anything about the ordehithehic
SUT experiences the results of the operations. There is a pogdiat the operations
become rearranged during transmission, if the transport protocbbydbe CM does not

guarantee in-order transmission.

Operation handling between CMs of different classes

As it is not required to have synchronization between different @d4ses, it is not

required to have synchronization between the CMs of different classes.

An example situation where synchronization would be harmful is two ctans, one

using a CM Class, which uses TCP as the transport protocol anddgarsdata, and
another one using UDP and is used for control messages for cogtriblé TCP data
connection. If the sending order of the messages was preservextibehe classes, and

if the send buffer of the TCP connection becomes full, then no contsdages via the

UDP connection can be sent until all the TCP data has been sent to the SUT. The situation
would be even worse if the two connections were unrelated. For exahmgie could be

one component using a UDP connection for completely other purpose than t tentr

TCP connection. This other UDP connection might be used for some kindrdfdata

protocol, which requires a transmission of a message at fixedalstelt would not make

54

sense if the sending problems with TCP data connection affdeedDP connection,

since their purposes are unrelated.

Operation order at test case level

When writing a test case, in which a component communicates wighatéargets over
several protocols, the test case writer has to choose and cerntguused CM Classes
and CMs so that they do preserve the test case’s intended delideryof messages and
procedure operations. This is not guaranteed by default and depetits amtext and
the used CM Classes.

It should be noted, that when a CM passes a message or a procedat®ropera
component via some specific TSI port, lets say “Port A", bywgua TRI interface
triEnqueue*() operation, and then passes another message or procedure operation
via other TSI port “Port B”, the receiving component cannot automigtidatermine

which event occurred the first. The messages or the parametbhesgybcedure operation
needs to contain a timestamp or sequence number, with which tleasescomponent

can reconstruct the order of events if this is needed, because-3 TG language does

not provide means to determine or compare the order of events between two ports.

55

5 INTERFACES

This chapter specifies the functionality of the following irdeds: Connection Interface
(CI), Mapping Interface (MI), CM System Interface (CSl), &M Class Interface (CCl),
which are shown in Figure 4-6. Of these, the Connection Interfasqmesfied in detail,
because it can be thought as TTCN-3 Core Language levelntisdace to the services
provided by the CM System, thus making it of interest to the taseé awriter.
Understanding it also helps in understanding what the other intettigce accomplish.
The Mapping Interface, CM System Interface, and CM Classféct are “under the
hood” at SUT Adapter level, so only an overview of them is given inctiapter. These
interfaces are used for keeping TSI port information considiahap), for registering
new CM Classes into the system, and for using their servacesmmunicate with the
SUT. Their detailed description can be found in Appendix A. Selecte@ W&grams

showing how the operations of the interfaces work together can be found in Appendix B.

5.1 Notation

All the interface operation in this chapter and in Appendix A pexified using the

following format:

Operation identifier (Caller or Sender - Callee or Recipient)

In: The parameters passed from the caller to the callee.

Out: The parameters passed from the callee to the caller.

Return: Return value of the operation.

Purpose. Description what the operation is used for.

When: Description when the operation is performed and what triggers it.

The parameters and return values are in format:
Typeldentifier variableldentifier

Operation has no mandatory parameters or return value if the corregppadi has
been omitted in the text.

56

The operations and data types are specified at an abstractliegehot required that
every operation exist in an actual implementation, which may be dorC or Java

language. The operations describe what needs to be done, and theandpaut part

describe the mandatory information that is passed betweealtbeand the callee in the
operations. It is not considered how the parameters are passednetmeny is allocated
and freed, or what is the representation format of the types attaal implementation.
The language mappings from the abstract operations and datdadypes Java are not
defined in this work.

An example situation in which the implementation does not need ltwftthe abstract
definitions is thecsiConnDecodeOp() of CM System Interface. This operation is
called by the SA to determine which CM System Interface tiparé should use to
handle ariSend() operation call. It is possible to replace all the connectioggoay
operations (excludingsiConnTerminate) with a single operation, which performs
the action ofcsiConnDecodeOp() and then calls the right operation directly, instead
of returning the identifier of the right operation to the SA, and haitimgll the right
operation. This would make the interface simpler for the SA, bubildvunnecessarily
complicate the specification of the different steps that need to be done.

5.2 Connection Interface

Connection Interface contains the operations needed to configure connéeivesn
component ports and the SUT (control operations), and for using them for comnamnicati
(data operations). All the control operations are realized withmieesage-basezkend
andreceive statements, with a particular TTCN-3 type as the paraméhe data
operations consist of all the TTCN-3 port operations that are wsecbmmunication
with the SUT via a data porsénd, call , reply ,raise). All the operations of the

Connection Interface are listed in Table 5-1.

5.2.1 On design choices

One reason for defining the Connection Interface control operatiomessage-based,
instead of using procedure statements, is the simpler synthe afiessage statements at

the TTCN-3 core language level, and simpler parameters at the TRIdpterfa

57

Table 5-1: Operations at Connection Interface.

Category: Direction: Operation identifier:
Control Component> CM ciOpen
Component> CM ciControl
Component> CM ciClose
CM - Component ciOpened
CM - Component ciStatus
CM - Component ciClosed
Data Component> CM ciData
CM - Component ciDatalnd

Another reason for using message ports is the semanticsmiteture port statements.
In a test case, when a procedure is called with the porttagecall | it is expected that
at some point of time the procedure returns, and that is handled witreply
statement. Similarly, after the receipt of a procedure cdil the getcall statement
the test case should contain a matchiey statement. The procedure port operations
can therefore been see as request-response pairs, with a depaatefl operations
depending on which side performs the procedure call. Because af this,procedure
ports were used, then the Connection Interface operations should alsdhe agpaired
manner. However, it is useful to allow the connection managersntb is&rmation
concerning connections without explicitly requesting for it, or withr@sponding to it.
For instance, when a CM notices that the connection it is handlicigsed by the SUT
or by a transmission error, it may notify the test case conmpoakated to the connection
with the message-baseaiClosed() operation.This operation is not a reply or an
acknowledgement to any action performed by the component, and the component does

not need an acknowledgement to it.

There exist a few reasons why the procedure-based approachbeoptéferred to the
message-based approach, even though this approach is not taken in thi§ avodwn
TTCN-3 signature (i.e., function declaration) is specified fohezicthe CI operations,
then the identifier of the signature can be used to identify tlm&ation. This identifier
is passed over the TRI interface separately from the pananadtehe function, and it
does not go through any kind of encoding or decoding, unlike the paravadtes
(Section 3.5 describes TRI interface operations). In the mebsage-approach there has

58

to be a separate operation identifier field in the transieiagyof the messages (specified

in Section 5.2.3), which has to be decoded and extracted by the recipient. This wark coul
be avoided by using the procedure-based approach. In the procedure-basedh apisroac
easier to access the different function parameter values, thiegean be read from the
parameter list. In the message-based approach they are conchssnseguence of bytes
and the recipient has to figure out when one parameter value rhtiseanext one starts.
However, the overhead in the message-based approach is minimal,ebet#us few
number of parameters. In the procedure-based approach the decodmgafatimeters is
slightly easier, since the TE knows to call the right decodeexctly, meaning the
decoders assigned to the parameter types. In the message-basechapipecdE has to
attempt to decode from the received data a value of any offghs, tthat can be received
from the used port, and which are being expected by the componenkafraple, if a
component expects in ait statement either @Opened or aciClosed message,

and aciClosed message is sent by the CM, then a decoding attempt is pofssibl
made for theciOpened type, and when this fails, a second successful attempt is made
for theciClosed type. These unsuccessful decoding attempts have no realosffenet
performance though, since a Cl operation decoder can decide fréinstidecoded bytes

of the received data which CI operation is in question (5.2.3: TabletBu3),it can tell

immediately without further decoding whether the decoding will be successiot.

Instead of doing the configuration via dedicated control ports wigsages or procedure
calls, one might consider usiraction statements oexternal function call
statements. The problem with tlaetion statements is that information can only be
passed in the direction of from the test case to the SA. Heneeteteipt of any
acknowledgements or status reports from the SA has to be implemerdgeme other
way. In addition to this, the next version of the TTCN-3 standard posalbiys only the
passing of textual data with tlaetion statement; it is not possible to pass a value or a
template with this mechanism any more [T3SMOCKUP: s. 26]. Bygushe external
function calls it is possible to return information back to thedase, but the problem is
that the resultingriExternalFunction() call is blocking; it will not return until
the invoked external function has returned. If the TE is implementdd avsingle

execution thread, then the whole test system becomes blocked fdurtteon the of

59

connection establishment with the SUT, if ti@pen() operation is implemented as an
external function call. TheiOpened() operation would in this case be implemented as
the return value or out-parameter of the external function. Dependitigeomsed CM
Class, it may take some time before the connection has been opededhe
triExternalFunction() can return. This time may be long enough to affect the

behaviour or the result of the test case that is being executed, which should not happen.

5.2.2 Type definitions

The TTCN-3 type definitions specified in the end of this sectiogu(E 5-3) are used to
define the Connection Interface operations. Their encoding and encattlithgites are

discussed in the Section 5.2.3, and their usage is explained in the Section 5.2.4.

Connection Interface operation message types can be defined ial ses¢s in TTCN-3
Core Language. The following aspects need to be considereddebiging what kind of
type definitions will be used for the Connection Interface operatissage types, and

for the CM Class specific parameter-type definitions.

Firstly, the information content of the Connection Interface omerathessages go
through two or three different representation formats when tleeysed. In a test case,
the Connection Interface operation messages are defined and ueetkii BCN-3 core
language representation format. When the messages are se¥] 8yest@m Component
receives them in an encoded form, since all messages ths¢rargia a TSI port are
encoded by the codec system. Before the CM System Component ctoe useeived

message, it may have to decode it to a more suitable internal format.

Secondly, there are two kinds of information present in the operaticsagess The first
kind is the information that is used to control the connections and wiréckest case
writer can set. This information comprises the connection edtai#ist parameters, SUT
addresses, and so on. The second kind of information is the meta-data g éue CM

System to be able to handle the operation messages. This consigtssafje identifiers,
type identifiers, class identifiers, data length values, and swhich should be of no

concern to the test case writer.

60

If the types are defined in a way, in which the data is &tred in TTCN-3 language
form close to how it is structured in the format in which tbi®e sent to the CM System,
the encoding and decoding of the data becomes easier. An example isfghown in
Figure 5-1. A TTCN-3 record, which contains IP addresses and poltensiifor both the
TE and the SUT, is supposed to be encoded into a consecutive sthitg. df the IP
addresses and port addresses are separated into two differeds,rékerinHeaderA ,
and the transfer syntax is such as shown in the figure, then tbdimgndecomes more
difficult. Either the codec has to encode the two internal records simultanémbgyable
to encode the information consecutively, or it encodes one recordrfaldeaves empty
space holder in the encoded bit string, and fills in this spagewaiée processing the
second record. Why this kind of situation could be wanted to be avoidadtishere
could be a generic codec that is designed to encode any recor®hgeould call it
recursively to process nested records, but it would be difficulh¢tode theHeaderA

with it because of the used transfer syntax.

If the types are defined in the way the data is used by th&s@em, the data handling
becomes easier to the CM System, but to the test case thetsystem might become
harder to use, since the use might need to have internal undergtaouli the
implementation of the used transport protocols and the CM Systenmexgample, it
would be convenient for a CM Class providing connections over Unix Sockeie i
received control data contained: a filledsinuct sockaddr value to be used with

connect() function, an address family value, a socket type value, and a protocol

TTCN-3 type definition: TTCN-3 type definition:
Transfer syntax:
type record HeaderA type record HeaderB
type record IpAddrs / 1. Source IP Source IP
Source IP 2, Source Port

Source Port
3. Destination IP

Destination IP |

I
S/

4. Destination Port

type record PortAddrs Destination Port

Destination IP ‘

Source Port

Destination Port

I

Figure5-1: Two different type definitions for the same data.

61

specifier value to be used witfocket() function [UNIX: ch. 4]. However, for a user
with no knowledge on socket programming the usage of these pammeteld be
difficult.

A user friendlier approach is to define types in such a wayihbkgtgive a higher-level
abstraction of what is provided, without the possibility to unintentionsdly illegal
parameter combinations, or to change the values of the meta-catabysthe CM
System. The values used within the implementation of the CM i8ysé& be derived
from higher-level parameters by combining them with extra infaomawhich is stored
in the form of type definitions and the type attributes of the comre¢sages. This
approach is used with the types defined at the Connection InteAadhe encoding
phase the codecs can add the extra information to the to-be-sebidathon the type
identifiers, type classes and type attributes. The type slagsedefined in [T3TCI: s.
7.2.2.1], and they specify the base or root type of any user specifiedety. integer,
record, set of, and so on. At the decoding phase, the codecs can eeaaformation
within the received data to build the right TTCN-3 types.

In the case of a CM Class providing connections over Unix Sockettyptalefinitions
for its connection-parameter types could be as outlined in FiglreBy using the type
definitions shown in the figure, the test case writer can onlineled valid set of
properties for a connection because of how the information has beapedr and
structured. For example, it is not possible to mistakenly defih€R connection with
options from the UDP class, or to require that the local port USEsblit the destination
port uses the UDP protocol. When encoding the values into transfer sgmaxthe
encoder is responsible for adding the information which alternatieeusiion is present
in the data.

62

module CmSocket

{
type union Open

SockUdp udp,
SockTcp tep,

SockRaw raw,
SockDomain unix

}

type record SockTcp
IpPeerRec addr,
UdpOptions opt

type record SockUdp

{
IpPeerRec addr,
TcpOptions opt

type record IpPeerRec
PortAddr localPort,
PortAddr remotePort,
IpAddr locallp,

IpAddr remotelp
}

type union IpAddr
{

IpV4Addr ipv4,
IpV6Addr ipv6
}

type charstring IpV6Addr;
type charstring IpV4Addr;
type charstring PortAddr length (1 .. 5);

type record UdpOptions { /* ... */ }
type record TcpOptions { /* ... */ }

} with

encode (Socket, IpAddr) "UnionAltEncoder";
encode (IpV6Addr, IpV4Addr) "CStringEncoder”;
encode (SockUdp, SockTcp, UdpOptions, TcpOptions , IpPeerRec) "RecursiveEncoder";

Figure5-2: Socket Class example.

The Connection Interface type definitions along with their desonptare listed in Table
5-2. The corresponding TTCN-3 type definitions are shown in Figurd-3re 5-4, and
Figure 5-5.

63

Table 5-2: Connection Interface type definitions.

Type | dentifier:

Description:

CiOpen

ciOpen() operation is performed, when a value of this rddgpe is sent
by a component via its control port to a CM. It tins fields of type

CiTsiPortld (optional) andCiOpenParams (mandatory).

CiOpened

ciOpened() operation is performed, when a value of this rédgpe is
sent by a CM to a component via its control pohisType contains fields

of typeCiTsiPortld (optional) andCiOpenedParams (mandatory).

CiClose

ciClose() operation is performed, when a value of this rddgpe is
sent by a component via its control port to a CiMohtains fields of type

CiTsiPortld (optional) andCiCloseParams (mandatory).

CiClosed

ciClosed() operation is performed, when a value of this rddgpe is
sent by a CM to a component via its control pohisType contains fields

of typeCiTsiPortld (optional) andCiClosedParams (mandatory).

CiControl

ciControl() operation is performed, when a value of this rédgpe is
sent by a component via its control port to a CiMohtains fields of type

CiTsiPortld (optional) andCiCloseParams (mandatory).

CiStatus

ciStatus() operation is performed, when a value of this rddgpe is
sent by a CM to a component via its control pohisType contains fields

of typeCiTsiPortld (optional) andCiStatusParams (mandatory).

CiTsiPortld

A value of this record type is used to identify @l port. It contains fields

CiTsiPortName (mandatory) an€iTsiPortindex (optional).

CiTsiPortName

Subtype of TTCN-Zharstring type. A value of this type is used to
identify a TSI port (array) by its name. The TSHp@rray) name is one of
the port identifiers of the component that is baisgd as the system

component.

CiTsiPortindex

Subtype of TTCN-3nteger type. A value of this type is used to
identify a particular port in a port array thatdentified with the field
CiTsiPortNamename of CiTsiPortld type. The special valummit

of denotes thaCiTsiPortName refers to a single port instead of a por
array. Any other non-negative refers to an eleréttie array. Themit
value is encoded as —1 (see Table 5-3), whichlisénwith Java and C
language mappings of the typeaPortldType [T3TRI: ss. 6.3.2.1 and
7.2.1].

[

64

Table 5-2: Connection Interface type definitions. (continued from the previous pa

Type | dentifier:

Description:

CiOpenParams

This union of CM Class specific types contains paters for opening a
new connection. For example, it can contain pedresses for the used
connection protocol, buffer sizes, and so on. Tdld hames of the union

are used as the identifiers of the CM Classes atSglem Interface.

CiOpenedParams

This union of CM Class specific types contains paeters for an opened
connection. A CM Class can use this type to reituiormation about the
opened connection to the test case. The field naifd® union are used 3
the identifiers of the CM Classes at CM Systemrfatz.

1S

CiCloseParams

This union of CM Class specific types contains paeter for closing a
connection. For example, it may contain informatidsout what should be
done with any possibly buffered data, or with tiagadthat is possibly
received from the SUT after it has been instrutteclose the connection.
The field names of the union are used as the ifilenstiof the CM Classes
at CM System Interface.

CiClosedParams

This is a union of CM Class specific types with gththe CM can return
any information about the connection that was aofer example, it may
contain a status report telling whether the conaravas closed cleanly o
if there were any problems. The field names ofuthien are used as the

identifiers of the CM Classes at CM System Intezfac

CiControlParams

This union of CM Class specific types can be useidiplement any CM

Class specific extra functionality that involvesidig a message to the

CM Class or CM. For example, parameters of opepedections can be
modified with this type. The field names of theamare used as the

identifiers of the CM Classes at CM System Intezfac

CiCfgPort

This port type is used to define Connection Intefaontrol ports.

CiStatusParams

This union of CM Class specific types can be usedplement any CM
Class specific extra functionality that involvesdimg a message from a
CM Class or CM to a test case component. For exantigk can contain a
status report of a connection that has been esttedoliwith the SUT. The
field names of the union are used as the idergifiéthe CM Classes at

CM System Interface.

65

Every operation type in Figure 5-3 is a record with two fields:t pecord
tsiDataPortld and class-parameter uniamass . The tsiDataPortld field
identifies the test system interface data port that igatget of the operation (and at the
same time a component data port). This value is optional and nayitied, which can
be useful in controlling server-like CMs without having a data cdioreovith it
(explained further in 5.4.7 TCP server example). The class-paraomta class is a
union of class specific parameter types used in the operat@solselects the used CM
Class. If a class does not want to use parameters in a Chtioper(e.g. in
ciOpened()), this can be done by defining the type of the class specific pteam
value €iOpened.class.udp) as an empty record. The parameter type may be
different in each of the CI operations, but it can also be thee dam, one set of
parameters for opening a connection — another set for closing iheosaime set of
parameters for both operations). Thecode attribute strings will be explained in
Section 5.2.3.

group ciOperations
type record CiOpen
{

CiTsiPort tsiDataPort optional,
CiOpenParams class

}
type record CiOpened

CiTsiPort tsiDataPort optional,
CiOpenedParams class

}
type record CiControl

CiTsiPort tsiDataPort optional,
CiControlParams class

}
type record CiStatus

CiTsiPort tsiDataPort optional,
CiStatusParams class

}
type record CiClose

CiTsiPort tsiDataPort optional,
CiCloseParams class

}
type record CiClosed

CiTsiPort tsiDataPort optional,
CiClosedParams class

}

} with

{

encode "CiOperation";

}
Figure 5-3: Connection Interface control operation types TTCN-3 Core Language.

66

Figure 5-4 contains example type definitions of ttlass unions of ciOpen ,
ciOpened , ciClose andciClosed operation messages, and the definition of the
control port. Selecting a union alternative @i<OperationName>Params
determines the used CM Class. The union alternative identifisocket |,
frameRelay) identify the classes at the CM System Interface. ThEN-B type
identifiers of the alternatives are irrelevant to the CMt&ys CmSocket.Open ,
CmFrameRelay.Open), making it possible to rename the modules and types used by

the classes without affecting the CM System.

Each component may only configure its own ports; therefore, no awenp identifier
field is present in the operation messages. All the Connectiofialcgerontrol operations

are performed via ports of tygaCfgPort , the TTCN-3 definition of which is given in

group ciFieldTypes

{
type charstring CiTsiPortName length (1 .. infinity);
type integer CiTsiPortindex (O .. infini ty);
type record CiTsiPort

CiTsiPortName name,
CiTsiPortindex index optional

}

type union CiOpenParams
CmSocket.Open socket,
CmFrameRelay.Open frameRelay,

CmLangCModuleTest.Open langCModTest,
CmLangJavaModuleTest.Open langJavaModTest

)

type union CiOpenedParams
CmSocket.Opened socket,

)

type union CiCloseParams
CmSocket.Close socket,

=

type union CiClosedParams

CmSystem.Closed sys, /ISee Section 5.3 Error Handling
CmSocket.Closed socket,
}
}
with
encode (CiOpenParams, CiOpenedParams, CiClose Params, CiClosedParams,

CiControlParams, CiStatusParams)
"CiOperationParams";
encode (CiTsiPort)
"CiTsiPort";
}

Figure 5-4. Field types of the Connection Interface operatimgssage types.

67

type port CiCfgPort message

/I To the CM System:
out CiOpen;
out CiControl;
out CiClose;

/I From the CM System:
in CiOpened;

in CiStatus;

in CiClosed;

}
Figure 5-5: Connection Interface port types in TTCN-3 Cora¢iaage.

Figure 5-5. The Connection Interface data operations are performedyiather user-

defined port types.

5.2.3 On transfer syntax and encoding

Because all the CI operations are implemented as TTCN-3, tyygetest case initiated Cl
operations are seen at TRI interfacetréSend() calls, where all the CI operation
information is encoded within th€riMessageType sendMessage parameter of
the TRI operation. Similarly, every CM or CM Class initiat@doperation is seen by the
decoders of the codec system of the TE as a string of byt#sinwihe
receivedMessage parameter of thdariEnqueueMsg() operation. Table 5-3
defines abstract transfer syntax for the Cl operations, in wheeloperations are passed
between the test case components and the CM System. The actdihg of the fields
depends on the implementation language. The endianness of the computahilCM
System is being executed may also affect the encoding, uhlesdecided that all the

values are always encoded in network byte order.

The CI operation messages in the format of Table 5-3 arge@féw being in format
CmSysControlMessage . All the fields are interpreted as a consecutive sequence of
bytes. The position column tells the relative order of the fislthsch may be stored into
one or more bytes each. When needed in encoding and decoding, ltfengitaof the
CmSysControlMessage can be retrieved from sendMessage and
receivedMessage , within which the codecs of the TE and the CM System receive the

messages.

68

Table 5-3: Connection Interface transfer syntax.

CmSysControlM essage

Pos.

Field name

Description

CiOperationld

Fixed width value that is used by the codecs offtBeand the CM System
Component to identify the CI operation in questidhe encoder that
handles the ClI operation type, or types, derivegitfht value based on the
type identifier of the value that is being encodesl, CiOpen, CiClose,
CiStatus, etc. The value is encoded in the sanregeptation format as the
CsiCiOpldType (Table A-2) has in the implementation of the CM
System.

TsiPortNameLen

Fixed width value that tells the number of bytesdifor the

TsiPortName field. The value is encoded in the same repreienta
format as th&CsilntegerType (Table A-2) has in the implementation
the CM System. This value is 0, when the tsiDataffeld has been omitteg

in Cl operation message.

=

D

TsiPortName

Variable width value that contains the name ofttlrget port of the
operation (value afsiDataPort.name). The value is encoded as a
sequence of values of ty@siCharacterType (Table A-2) of length
TsiPortNameLen , in which eactCsiCharacterType is in the
representation format used by the CM System. Tdlisevis not present

whenTsiPortNameLen is 0.

TsiPortindex

Fixed width value that identifies the target podéx of the operation (valu
of tsiDataPort.index). The value is encoded in the same

representation format as tlsilntegerType has in the implementation
of the CM System. This value is -1, when tsi®ataPort.index has

been omitted in the CI control message.

D

ClassldLen

Fixed width value that tells the number of byteeduor theClassld
field. The value is encoded in the same representidrmat as the

CsilntegerType has in the implementation of the CM System.

69

Table 5-3: Connection Interface transfer syntax. (continued from the previous pa

Pos,| Field name Description
Classld Variable width value, which identifies the CM Cldbkat handles the CI

operation. The codec that handles encoding ofldes field of the ClI
operation messages derives this value from the fiame of the currently
selected union alternative, for examplass.socket . TCI-CD

6 operationT String getPresentVariantName() [T3TCl:s.
7.2.2.2.15] can be used to determine the field nafie value is encoded
as a sequence of values of typgiCharacterType of length
ClassldLen , in which eactCsiCharacterType is in the

representation format used by the CM System.

ClassDatalLen This fixed width value contains the length@issData field. The value
7 is encoded in the same representation format aSstietegerType has

in the implementation of the CM System.

ClassData This value contains the value of the selected ualtarnative encoded in a

8 class specific format, e.glass.socket . Itis encoded as a byte

sequence of lengt@lassDatalen

When the CM System implementation language is C and fixed-Idieddls are used, it
might be a tempting idea to do the encoding and decoding by typegcd3ticause the
CmSysControlMessage uses variable length fields, this kind of decoding cannot be
used for the whol€mSysControlMessage . However, for the class specific data part

this could be done in the following way.

To encode a structured value, one could fill in a corresponding C-stitincth& right
values, and then interpret the structure as a sequence of bygesngya char pointer to
it. Care must be taken when decoding the data back into the Ctgpadiecause of the
data type alignment used by the processors. When a codec encodes a TTGNH3val
sequence of bytes to be transmitted over TSI, a pointer valuestbyite sequence gets
stored into &riMessage sendMessage (or intoreceivedMessage in the case of
decoding of a value). When teendMessage passes through the TRI interface, there is
no guarantee by the TTCN-3 standards that the pointer value wéhatiMessage is
the same as the one set by the codecs; it could point at afttpy data, which may be
differently aligned in memory than the original data. Thus\p$y type casting the data
and reading the fields may cause hardware exception in centanorenents because of

70

the misaligned data. Therefore, the data insiedMessage should be copied into a
new memory location with the same byte alignment as the type has, i.e. aite a¥the
type, before accessing the fields within the data. The compiMdSgstem and the
codecs need also to have a common understanding about any possible paddeg i
structures and ordering of the fields, which may depend on the caopitstrameters.

Because of these problems, it is safer to do the encoding and decoding one figieat a ti

There are no standardized methods with which one could gain docassodec, but it
would be very useful to be able to call a codec from another c6dete TTCN-3 tools
provide their own methods with which the codecs can be queried Hed, ¢daut using
these makes the codecs tool dependent. If the tool does not providepbesens, then

the root codec of a structured type has to know how to encode the sthaitire from

top down to its atomic nodes. For example, if one has written typeitidas with
encoding rules for a PDU of a protocol and codecs for it, aed ¢tat would want to
encapsulate this PDU within a PDU of another protocol, then it would be nice if the codec
of the outer PDU could call the codec of the inner PDU to do itsdemg. Otherwise, the

outer PDU codec has to re-implement the codec of the inner PDU.

If the tool does not provide its own methods for accessing codecsctrdats, or if the
encoding is wanted to be as tool independent as possible, it migltrtheimplementing
an own codec system, which provides methods for registering codecg iny type
identifiers, type classes, encoding attributes, or by other ig@stifTo use this codec
system, a single relay codec is needed, which implements @eCD interface’s
encode() anddecode() operations. This relay codec could be registered to the used
TTCN-3 tool as the codec for all the types, type classes,cmderg attributes (depends
on the used tool how this can be done), so it will always be calied & value should be
encoded or decoded. The relay codec gets the right codec fromdee sgstem by
guerying it with the encoding attributes of the value. The Ge@odec in Figure 4-2 is
this relay codec, and CM Class Codec System can be sdka asdec system, which
provides the methods for querying and calling the codecs needed to elwctiting and
decoding of their types.

71

As of writing this document, the TTCN-3 Control Interface stmddT3TCI] does not
provide operations with which a decoder could ask for the types oftdraatives of a
union type, or attributes of the union alternatives. This makes ittbandite a generic
union type decoder, because a union decoder has to contain hard-codedtiofoatout

the types of the alternatives to know how it should process eddh Aielecoder of a
Ci<OperationName>Params union type has to be updated after addition of a new
CM Class to make it aware of the new union alternative typs. ddmflicts with the idea,
that one should be able to add new CM Classes to the system withig teamodify

the program code of the existing encoder and decoders. Some of the3ricol do
provide the type information for union fields, either by tool speekita operations, or
by slightly changing the definitions of some of the TCI operations. The dr&awmasing
these non-standard methods is that the decoder code cannot be used withamane
tool without changes. To avoid this, the CM Class Codec SystengafeF4-2 can be
used in implementing a generic union decoder GoxOperationName>Params

type in a tool independent way. Because the union alternative nanebecalways
retrieved from union type (TCI provides an operation for this), emdhe case of
Ci<OperationName>Params type they serve as the CM Class identifiers, the union
decoder can ask from the CM Class Codec System what is the foode certain CM
Class by using “<cmClassld><operationName>" as the key. dfhi®urse requires that
when the CM Classes are registered into the CM System Jabe specific codecs are

registered into the CM Class Codec System as well.

The attributes in Table 5-4 are used with the TTCN-3 typanitiefis of the CI interface
(Figure 5-3, Figure 5-4) to select the codecs, which do the encbédimgen the CI
interface types and thEmSysControlMessage format of Table 5-3. If the used
TTCN-3 tool does not support attributes, then the codecs can be dddased on the
TTCN-3 type identifiers.

72

Table 5-4: Connection Interface type encoding-attributes.

Attribute: | Value Description:

Encode CiOperation This attribute selects the lbadec for the all the Cl-operatig

=]

types. Its responsibility is to encode and decbeéevalue of
Operationld field of CmSysControlMessage based on
the type of the Cl operation message being co@&dden ,
CiOpened , CiControl , etc.). It shall also call the codecs (of
the Cl-operation message fiel@grsiPort

tsiDataPort , Ci<OperationName>Params class

Encode CiTsiPort This attribute selects the codéich handles the encoding
and decoding between tl&TsiPort tsiDataPort field
of the CI operations messages and the fields
TsiPortNameLen , TsiPortName , andTsiPortindex

of CmSysControlMessage

Encode CiOperationParams This attribute selectsdadec, which handles the encoding
and decoding betwedi<OperationName>Params

class field of the ClI operation messages and the fields
ClassldLen andClassld of the transfer syntax. The
value ofClassld is the identifier of the selected union

alternative otlass . The advantage of using the alternativ

(1%

name as the identifier is that codec does not tebdve built-
in information about the identifiers, thus new elas can be
added without changing the code of this codec.cduec calls
the right class specific codec based on tlas€ld , and the
called codec then encodes and decodes the seletted

alternative of into and from the field@dassDataLen and

ClassData of theCmSysControlMessage

5.2.4 Operations

All the operations, exceptiData and ciDatalnd , are performed by sending or
receiving a value of TTCN-3 type via control ports. Tieata and theciDatalnd

operations are performed via data ports.

73

ciOpen (Component - CM)

In:

Purpose:

When:

CiOpen open_s
Message of typ€iOpen . See Table 5-2 for its contents.

With this operation a component can request the CM System to opsm a n
data connection between a component data port and the SUT, by sanding
message of typ€iOpen via its control port. The message specifies the TSI
data port via which the connection is to be opened, the CM Class to be used to

handle the connection, and any class specific parameters.

When the connection has been opened, the component receives via its control
port an acknowledgement in the form ofOpened message. If the
connection cannot be opened for some reason, the component receives a
ciClosed message. No other Cl operation addressinegsame TSI data

port may be performed by the component, until an acknowledgementdor thi
operation has been received; other components may try to configueentbe s

TSI data port for their use, and the same component may try to cenfigur

other TSI data ports while waiting for the acknowledgement.

After the component has its control port mapped with TSI control aod,
the data port of the connection has been mapped with a TSI data port.

ciOpened (CM -> Component)

In:

Purpose:

CiOpened opened_r
Message of typ€iOpened . See Table 5-2 for its contents.

This operation is confirmation to tlwgOpen() operation, and it consists of

a CM sendingCiOpened message to component in the encoded form (
CmSysControlMessage , Table 5-3), and of the receipt of this message by
the component with theeceive port-statement. The CM can construct the
encoded message with the help of CM Class Interface operation
cciEncodeCiCtrlOp() (A.2.2). The message contains the information

which TSI data port and which CM Class is in question, hence tietvirgg

74

When:

component knows whichciOpen message this acknowledges. The
ciOpened contains also any class specific parameters concerning the

opened connection.

When the component has receiveddli@pened message, it may start using
the configured data port to communicate with the SUT. It depends on the used
CM Class and the parameters of tbh®pen() request, whether the

connection is ready for sending, receiving, or for the both.

This operation is always a response todi@pen() operation. It cannot be
used for example to notify a test case component about opened corsgction
the case, when the CM is a server listening for multiple cziome
establishment attempts from the SUT, and for each established tonrike

CM has to notify the component. Situations like this can be handled by

notifying the component with th@Status ~ message.

In a response toiOpen() operation, when the CM System was able to
provide a CM to handle the new connection, and the CM has performed any

actions needed to make the new connection ready to be used.

ciClose (Component -> CM)

In:

Purpose:

CiClose close_s

Message of typ€iClose . See Table 5-2 for its contents.

With this operation a previously opened connection can be closed. The
component specifies the to-be-closed connection by sending a medsage

type CiClose via its control port. The message specifies the TSI data port,
via which the connection has been previously established, the used €3/ Cla

and any class specific parameters that may affect thetwe connection

should be closed.

Once this operation has been performed, the component may not perform an
other CIl operations for the same TSI data port until this aperags been

confirmed by the receiving CM with theClosed() operation. Like with

75

theciOpen() operation, this operation has no effect on the configuration of

other TSI data ports, or on configuration done by any other components.

When: When a successfully opened connection needs to be closed.

ciClosed (CM - Component)

In: CiClosed close_r

Message of typ€iClosed . See Table 5-2 for its contents.

Purpose. This operation is A) confirmation to theiClose() operation, B) an
indication that aciOpen() operation has failed, or C) a closing indication

concerning a previously opened connection.

When: A) In a response taiClose() operation, after the connection has been
closed so, that the CM Class is ready to re-establish theection if

requested.

B) In a response toiOpen() operation, when a new connection could not
be opened for some reason. In this caseCilidosed message can also be
sent by the CM System, if it notices before it has passedpie request to a
CM Class, that the request cannot be fulfilled. Section 5.3 Erradlig

contains more details on error handling.

C) As an indication to the component, that the connection it had previously
opened has been closed without the component requesting for it. This may
occur for example when the CM notices that the SUT has temdirtae
connection, or that the transmission medium becomes unavailable araloes
behave correctly (e.g. unplugged network cable, network congestionh Whe
exactly this indication is sent depends on the used CM Class antsdbe

configuration parameters.

76

ciControl (Component - CM)

In:

Purpose:

When:

CiControl control_s

Message of typ€iControl .See Table 5-2 for its contents.

With this operation it is possible to send CM Class specific rabnt
information to the CM handling a previously opened connection. The

meaning of this operation depends on the used CM Class.

For example, if the CMs of the used class are server proghainsan listen

for connection establishment attempts from several SUT address
operation can be used accept and disconnect those connections one by one.
When the server is not needed anymore, it can be closed with the

ciClose() operation. See Section 5.4.7 for an example scenario.

When a connection has been previously opened with ct@pen()

operation, and the used class supports this optional operation.

ciStatus (CM -> Component)

In:

Purpose:

When:

CiStatus status_r

Message of typstatus_r . See Table 5-2 for its contents.

With this operation a CM can send CM Class specific statusniaftion to
the test case. This operation may be used as a responseitaihitol()
operation, or it may be sent by the CM as a result of certain event. See Section

5.4.7 for an example scenario.

When a connection has been previously opened with ctBpen()

operation, and the used class supports this operation.

ciData (Component - CM)

In:

Purpose:

Any TTCN-3 value, template, or function signature.

This operation is refers to the TTCN-3 port statemsetsl , call , reply

andraise , which are performed on a data port, via which a data connection

77

has been previously opened with th®pen() operation. These operations

can be seen as requests to the CM System to deliver to the SUT.

When: When a connection has been previously opened with ct@pen()

operation.

ciDatalnd (CM -> Component)

In: triEnqueue*() parameters.

Purpose: This operation refers to the CM sending an event to a comporeat V5l
port, for which the component has previously opened a data connection with

theciOpen() operation.

When: When a connection has been previously opened with ctBpen()
operation, and the CM handling the connection has received a message or
procedure operation from the SUT, which should be delivered to the

component.

5.3 Error Handling

During any of the operations it is possible that something goasgwSome of the CSI,
CCl, and MI operations specified in Appendix A have a return valuetypé
csiStatus , which tells whether the operation could be handled or not, but this may not
be sufficient error handling, since these return values are noaséee test case level. In
this section it is shortly outlined how the error handling can bended to the test case

level and performed there, if required.

In case a CM Class or its CM detects an error, it may ehtmsiotify the test case
component with theiStatus orciClosed message. The message may contain in a
class specific format a description of the error that occurrederfor occurs for example
in the following situations: the class is not able to decode thenptea data it receives,
or the user tries to communicate with the SUT with procedure-lssdtions but the

used class supports only message-based communication.

78

The situation is more difficult when an error affecting a conoecaiccurs within the CM
System Component. For example, if the CM System Component is haadii@gen
message and it fails to forwards the open-request to theGlghtlass, the CM System
Component should be able to negatively acknowledgeci@pen message with a
ciClosed message as required in 5.2.4 Operations. As it is shown in FgBirand
Figure 5-4, theciClosed message (like all the other CI control operation messages)
contains a parameter fietdass , which is a union of the class specific parameter types
of every CM Class. The selected union alternative is used tdystiex used CM Class.
Even if the CM System Component knew for which class it shouldecraaterror
indication, it cannot send@Closed message on behalf of any of the classes, because
only the classes know the contents and transfer syntax they ueifoclass specific

parameters.

It could be required, that each class provides a method with wh&elCM System
Component can request the class to send the message to the conopoitertiehalf.
Unfortunately, this does not work in the situation in which an unregistered or non-existing
class is tried to be used from the test case level, siné&\h8ystem is unable to call the

method.

A new CI control message of typé&rror could be introduced, which would be used
by the CM System Component to send error indications to theasstcomponents. If
this new type was added, then its exact meaning would havaddrn its context or
contents: is it an error acknowledgementitopen or to some other operation, or is it a
stand-alone error indication. If tlegError did exist, then it might be as well used by
the CM Classes in addition to the CM System Component.cifreor type would
then need to contain either a union of class specific error typsslike the parameter
unions are used in the other CI control messages. Alternatively, it could contparaese
field for identifying the CM Class and a field of a common dajae for the error
information. At this point theiError type is almost identical to the other CI control
message types, except that its meaning (e.g. is it a wegatknowledgement to the
ciOpen) has to be included within its error information field, which compdisats

interpretation and handling.

79

Instead of using a separatéError message, it may be easier to specify a union
alternativesys for theCi<OperationName>Params types, which is used by the CM
System Component in the CI control messages whenever it has to caatauwmith a
test case component. Thgs alternative should be present at least inGiifgtatus

andCiClosed message types, as shown in Figure 5-6 foClkkdosed type.

In the CiClosed type thesys -alternative can be used to negatively acknowledge the
ciOpen messages, for example when the user tries to use a ChltG#dgloes not exist

in the CM System. I€iStatus type it can be used by the CM System Component to
indicate about situations in which no connection has been closed but ais eletected
within the CM System. An example of this is that the CM System Component is umable t
decode a CI operation message that it receives in the tragstax form, because of an

erroneous encoding.

If the test case writer has to handle all the possible eressages that might be received
from the CM System or from the CM Classes, the test cas®s become obfuscated by

the error handling. To prevent this situation, all the CM Systemtlamd_M Classes

module CmSystem

{

mgroup ciOperations

&pe record CiClosed

CiTsiPort tsiDataPort optional,
CiClosedParams class

}
-

group ciFieldTypes
{
type union CiClosedParams
{
[* This is the alternative used by the CM System with
* the ciClosed operation.
*/
C nBSystem Cl osed sys,
[* This is the alternative used by the cla ss Socket with
* the ciClosed operation.
*
CmSocket.Closed socket,

}
/* The type could be just a string describing why the CM System
* closed a connection or why it could not op enit.
*
type charstring d osed;

-
}

Figure 5-6: Thesys -alternative used by the CM System.

80

should provide defaultltsteps , which do the error handling on the behalf of the test
case writer. These default alternatives (see Section 2.fd)ecactivated by the user in
the beginning of each test case for those components and portsettiae UGSl control
messages. The defaults provided by the CM System can be sdep-lasel error
handlers. Because the firstly activated defaults are evalubtedast, the defaults
provided by the CM System should be activated before the defaultd Gi&sses, which

in turn should be activated before any user specified defaultzldsa provides several
defaults, then it could be useful if the class provided a paramestdunction, which can

be used to activate all or some of the defaults with a single call.

A simple defaultaltstep provided by the CM System could be such as shown in
Figure 5-7. It sets the test case verdict to inconclusive wheiClosed message is
received from the CM System, after which it calls a fiomcthat notifies the MTC about
the situation. The MTC in turn shuts down all the existing test casnponents in a
centralized manner. The way in which the exped@@losed message has been
defined with an inline-template is not necessarily consideredgasl TTCN-3

programming style, but is used here for the sake of brevity.

module cmSystem

{
.a.litstep d_ciClosedHandler(CiCfgPort p_port)

/I If we receive a CiClosed message sent by the CM System Component
[l p_port.receive(CiClosed: {?, {sys := ?}})
{

setverdict(inconc);
notifyMainTestComponentAndShutDown();
}
}

=

Figure 5-7: An example defaulaltstep() for handling theCiClosed message
sent by the CM System.

5.4 Connection Interface Usage Examples

This section shows with two examples how the Connection Interfacbecare used to
open communication channels with the SUT. In the first example a d@wmevith the
SUT is actively opened, while in the second one a server prograradted to passively

listen for connection establishment attempts from the SUT.

81

5.4.1 Operation messages

The test case writer has three different Connection Intetjgeedefinitions, which are

used to configure connections by sending messages of these types via control ports:

CiOpen,
CiControl,
CiClose.

The responses or acknowledgement messages to these are senChy System and

their types are:

CiOpened,
CiStatus,
CiClosed.

Of these, only th€iOpened message is strictly an acknowledgement message, and it is
always sent by the CM System as a respongei@pen when a connection has been
successfully openediClosed is sent by the CM System as an error indication when a
connection cannot be opened, or when a previously opened connection has been closed by
the SUT, or the connection has been lost for some other reason. ThefuS&atus

is class specific; it can be used as a respon€gdontrol message, but it can also be

used independently of it for example when the used CM Class needsifjothe test

case about an event.

All the message types contain the same two fields. The first field

ciOpen.tsiDataPort

identifies the TSI port that is being configured. The port is ifiedtby its name and by
an index value if the TSI port is a port array. The configurasotdone per component
basis, so another component may configure the very same TSI pocorfgpletely
different use, without affecting any configurations done by other components.

The second field is used to choose and identify the used CM Class (transport méchanism
It is a union of all the present communication mechanisms avaitatie users. The CM
System takes care, that when a test case component sealige @f\CiOpen type in

which field

ciOpen.class.tcp

82

IS present, this is automatically routed to the class that is identified y/'bgm".

Similarly,

ciOpen.class.udp

is routed to the classutlp”. When a test case component receives a message from the
CM System, the union alternative ofass field identifies the class that sent the
message. For example, when tbp alternative is present in the message, it means the

message was sent by the clasp

ciOpened.class.tcp.

All the other parameters the user can set depend on the usedFdagxample, a CM

Class calledttp " could contain the following parameter fields:

ciOpen.class.tcp.localPort,
ciOpen.class.tcp.locallp.ipv4,
ciOpen.class.tcp.remotePort,
ciOpen.class.tcp.remotelp.ipv6,
ciOpen.class.tcp.options.rxBufferSize.

If a new communication mechanism is implemented, a new altegnigtisimply added
into the class field of the CI operation messages to make it usable. A new
communication mechanism could be identified ethérnet ", and when it is added
into theciOpen.class union, the CM System automatically routes the configuration
messages in which this new alternative is present to the Cids Gtentified as

"ethernet ".

5.4.2 TCP connection — open request

The test system configuration could be as shown in Figure 5-8: Two different congponent
want to use the same TSI popt“protoX ” to communicate with different SUT end
points. For both of these connections, there will be an own CM, whlds tcare of
maintaining the connection with the SUT. The CMs encapsulate all the messaajesd

from the components within TCP-frames and deliver them to the SUT.

83

TSI component CM Class tcp TCP SuUT

connection
fem —
T om
| [_pt_protoX | handling ‘ localPort + ‘ port
pt_data
= ! | — Component
1

Component
1

pt_ctrl

CM

handling ‘ localPort H port
Component
2

Component
2

{

‘ pt_ctrl } |

| pt_config |
]

Figure 5-8: Class “tcp” example.

In this example the test case components are defined as:

type component TestComponent

port CiCfgPort pt_ctrl;
port ProtocolX pt_data;
}

The used test system interface component is defined as (or is compatible with):

type component TsiComponent

port ProtocolX pt_protoX;
port CiCfgPort pt_config;
}

When the user wants to establish a TCP connection between localatRirdss
"127.0.0.1:4242" (which in this case stands for the IP address assigoee wf the
network interfaces of the computer, in which the test case esuged) and IPv6
destination "fe80::20f:20ff:fe73:80", then the required TTCN-3 codafoomponent to

request the CM System to open the TCP connection could be the following:

\./.ér CiOpen ciOpen;

ciOpen.tsiDataPort.name := "pt_protoX" // Refe
ciOpen.tsiDataPort.index := omit; // Single port
ciOpen.class.tcp.localPort := "4242";
ciOpen.class.tcp.locallp.ipv4 := "127.0.0.1"
ciOpen.class.tcp.remotePort := "80";
ciOpen.class.tcp.remotelp.ipv6 := "fe80::20f:20f
ciOpen.class.tcp.options.rxBufferSize := 1024;

;ﬁ.ap(self:pt_data, system:pt_protoX);

map(self:pt_ctrl, system:pt_config);
pt_ctrl.send(ciOpen);

84

rs to system port
, not an array

f:fe73";

The code fragment sends a request to the CM System to open Sligport
“pt_protoX " a connection using CM Clasgcp ", with the following class specific
parameters: local and remote port, local and remote IP, and recéigt size (which

could be used to set TCP window size, but which in here is just an example parameter).

To avoid the need of filling in all the different parameterdiselthe used CM Class could
provide a TTCN-3 module containing parameterised templates forediffgpurposes,
with default values for seldom used parameters.

5.4.3 TCP connection — opened confirmation

Before a component can start to send or receive data via a gonneshose
configuration it has started by sending Gi®©pen message, the component is required
to receive &iOpened message to confirm that the connection is ready to be used. The
component may send concurrently anot@#&pen message for another connection that
should be opened before receiving an acknowledgement to the first ionkarl$ to
CiOpen message, its positive and negative acknowledgement mess@ped and

CiClosed contain the fieldstsiDataPort and.class

ciOpened.tsiDataPort
ciOpened.class.tcp

ciClosed.tsiDataPort
ciClosed.class.tcp

The class specific parameters do not have to be the sam€&3pi@n , because a class
does not necessarily need to or want to echo back to component thepaameter
values the component sent to it. The paramete@@pened message could contain for
example status information and identifiers that can be used in further comatramid@he
parameters o€iClosed message could contain an error code, which explains why the

connection could not be opened to help in solving the problem.

Going back to thettp "-class example, the TTCN-3 code for the receipt could be the
following: First, it is checked that the response is to the rMgRpen message by
checking that the port identifier and the present class arectan the received message
(i.,e. the same as in the seriDpen message). If the connection was successfully

opened, the positive acknowledgemei@pen is received from the CM that handles the

85

connection. It contains the MAC-address of the network adapter of theifSbis can be
resolved (just for an example). In the case the connection could not bedofbke
receivedCiClosed message contains a description of what went wrong. The actual

TTCN-3 code for doing this could be the following:

;/.i'ar CiClosed ciClosed;
var CiOpened ciOpened;

alt

/I The .receive(..) contains an inline template definition of type CiOpened:

[1 pt_ctrl.receive(CiOpened:{ciOpen.tsiDataPort, {tcp := ?}) -> value ciOpened;
log("Connection opened successfully.");
/I Store the mac address of the SUT
g_myMac := ciOpened.class.tcp.sutMac;

[] pt_ctrl.receive(CiClosed:{ciOpen.tsiDataPort, ?}) -> value ciClosed
log("Connection could not be opened successfu ly.");
/* Note: the below use of concatenation opera tor is not

* standardized as of writing this document.

*

log("Error reason: " & ciClosed.class.tcp.err orCode);
setverdict(inconc);

[] pt_ctrl.receive

log("Unexpected message received.");
setverdict(inconc);

}
}

To simplify the test case writing, the CM Classes could provide a skstejpa which can

be used to automatically handle the receipt of acknowledgementestivase writer can
activate these as defaalt statement alternatives, or they can be called manually in an
alt statement. The classes could also provide functions, which contaithbatending

of requests and the handling of the confirmation messages, thusC#ecdnnection
opening —example could then be reduced to a single function call. The f@IdWICN-3
code fragment shows how function thécpOpen() , provided by the classtcp 7,
could be used to open a TCP connection. The function is simply catleth@onent, and

it returns a boolean value, which tells to the caller whethecaheection was opened

successfully or not:

86

var TcpMac myMac;
var CiTsiPortld tsiDataPort := {"pt_protoX", omi t};

if (not f_tcpOpen(pt_ctrl,
tsiDataPort,
a_tcpOpenDefault("fe80::20f:20ff: fe73",
"80"),
myMac)

setverdict(false);
stop;

}

The definition of the used tcpOpen() could be the following:

function f_tcpOpen

inout CiCfgPort p_controlPortOfTheComponent
in CiTsiPortld p_tsiDataPortldentifier

in TcpOpenParams p_tcpClassSpecificParams,
out TcpMac po_macAddr

return Boolean

{

/I Sending of ciOpen request:

[* Usage of alt-statement like shown earlier in this section to handle
* the ciOpened confirmation and the possible ci Closed failure indication.
* |f CiOpened is received, function returns tru e, else it returns false.

*/

The first parameter is the control port of the component viahwtiie function should
send and expect control messages. The second parameter identifigs poet via which

a new data connection is wanted to be opened, and the third paraméerscthe class
specific parameters. The fourth parameter returns to ther ¢hé MAC-address of the
SUT. The port is passed as parameter to the function, becausedhtierf does not have
aruns on -clause, which would be needed to make the ports of the component visible
to the function (see Section 2.6). According to the TTCN-3 definitioms, above
function cannot invoke internally any altsteps or functions for whiegina on —clause

has been specified, because it self does not contairutiseon —clause. To fix this
problem, the function definition could be as above except that the porhgiarais

omitted, and a runs on clause is added:

87

function f_tcpOpenWithRunsOn

(

in CiTsiPortld p_tsiDataPortldentifier

in TcpOpenParams p_tcpClassSpecificParams,
out TcpMac po_macAddr

runs on G Control
return Boolean

{
.

The definition of the component typeiControl on which the function

f_tcpOpenWithRunsOn is specified to run could be defined as:

type component CiControl { CiCfgPort pt_ctrl }

This definition of CiControl Is runs on —compatible with the definition of

TestComponent :

type component TestComponent

port CiCfgPort pt_ctrl;
port ProtocolX pt_data;
}

This means that tcpOpenWithRunsOn can be called from a component of type
TestComponent , andf_tcpOpenWithRunsOn has an access to tiieCfgPort

ctrl -port, without the need to provide it as one of the function paramédteis is
useful, because when the functions the clags " are designed, it is not known in which
kind of component types want to use the services provided by the ctssus® of this,
all the functions and altsteps the class provides could be defitedtm on components
of the typeCiControl . As long as the client test case componentsare on —

compatible with the€iControl , they can call the functions provided by the class.

5.4.4 TCP connection — data

Once the component has received ti@pened confirmation message from the CM
System, it can start using the opened data connection. For exavhgle,the SUT is
assumed to be a web-server and HTTP GET method is used to negbgsage via the

opened TCP connection, the TTCN-3 code could be something like the following:

88

var ParsedHttpResponse response;

.rﬁ_data.send(a_httpGet("~kermie/index.html"));
t_getTimer.start;

alt

{

[] pt_data.receive(a_httpOk(?)) -> value respo nse

/I Got the requested page

[] pt_data.receive(a_httpNotFound(?))

/I Did not receive the page, even though it s hould be there

}

[1t_getTimer.timeout

{
-

5.4.5 TCP connection — close request

When a connection is not needed anymore, it should be explicitlydathseng test case
by sending &iClose message, just as it was done WiiOpen message to open the
connection. The class specific parameter for closing the connemtayn contain
parameters on how the connection should be closed: are possibly buffessdges
transmitted or discarded, and is it waited until the SUT acknaekedlosing of the

connection.

In the case of the point-to-point TCP example, the TTCN-3 codeefpresting the CM

System to close a connection could be the following:

var CiClose ciClose;

ciClose.tsiDataPort.name = "pt_protoX";
ciClose.tsiDataPort.index = omit;
ciClose.class.tcp.shutdownMethod := "graceful”;

pt_ctrl.send(ciClose);

If the situation is like in Figure 5-8 and Component 1 executealibee code, the CM
System will close the data connection that the component has \paritpt _data

which is mapped with the TSI popt_protoX . Once the component has sent the
CiClose message, it is illegal for it to send any other messagacerning the same
connection, until th€iClose message has been acknowledged by the CM System with
a CiClosed message. The component may configure or use other connections (not

shown in the figure) while waiting for the acknowledgement. The rdoif the

89

connection done by Component 1 has no effect on the connection that Compbasnt 2
via the same TSI port, because every component that exists @uriegt case may

configure any of the TSI ports independently from each other.

5.4.6 TCP connection — closed confirmation and indi cation

Similarly asCiOpened message is used to acknowledge@i@pen message, the CM
System usef€iClosed message to acknowledge tG&Close messageCiClosed
message is also used as a negative acknowledgent@@mpen , when opening of a new
connection fails for some reason, and as an indication, when a previowsigdop
connection has been closed. Because of this, a well-writtenassthas to be ready to
accept theCiClosed messages at any time via its control port. The non-requested or
unexpected closing indications can be handled by activating a mlagsled default
altstep in the beginning of the testcase or a function, like is done in the below code:

testcase tc_example()
runs on TestComponent
system TsiComponent

{

);‘. pt_ctrl is port reference this components con trol port,
*{"pt_protoX", omit} is a value of type CiTsiP ortld
*
activate(def_tcpClosedInd(pt_ctrl, {"pt_protoX", omit}));
The def_tcpClosedind is an altstep, which takes a reference to the control port of

the component as the first parameter, and identifier of the TSI gsothe second
parameter, to be able to know which component port is used for thenttblamessages,

and which data connection is in question.

A confirmation to theCiClose message could be handled with a class provided altstep,
or manually like in the below TTCN-3 code fragment. Teeeive statement re-uses

the TSI port name from the sem©pen messagec{Open.tsiDataPort):

var CiClosed ciClosed;

pt_ctrl.receive(CiClosed:{ciOpen.tsiDataPort, {tcp :=?}) -> value ciClosed;
/* The below log statement call is not standardized , but

* an example of how one might return statistics da ta within the

* ciClosed message, and have them printed into the log file.

*/

log("Connection closed successfully. Statistics of the connection:");

log(ciClosed.class.tcp.connStats);

90

5.4.7 TCP server example

In some test cases, it should be possible to accept incoming connestablishment
attempts from the SUT. To handle situations like this, the usedGldds needs to
provide CMs that are servers, which listen to establishment @iefrom specified
sources. Depending on how the class is implemented, some extriirgjgmaght be
needed to notify test components when new connections have been established.arhis extr
signalling can be done witiControl andCiStatus messages, which are used also

in this example.

The usage of a CM Class calledpServ " is explained next. Thet¢pServ " is just
like any other CM Class: to communicate via TSI, one mustdpsh a new connection
by sending &iOpen message. The difference betwewpServ "-class as thetp "-
class is that here "opening" of a connection means eithengtafta TCP socket server
process or joining it (i.e. opening a communication channel witiMitich action is done
depends on the class specific parameter values. From the CM System Quinpparteof
view theCiOpen message always means "please open a new connection”, withemo ot
particular meaning. The complete meaning of sendingi@pen message depends
entirely on the used CM Class. During handling of@@pen message, the CM System
Component stores a mapping from the test case component to a Céftaivhich in this
case is happens to be a TCP-server process.

There is more than one approach how a classtdgSéerv " could be used from the test
case level. One way to use the class is that one of theatss components is a creator-
component, which creates the TCP-server, and then creates ands as&itker-
components to handle any new SUT established connections, the existambich is
reported to the creator-component by the TCP-server. A variatitinis is to have one
component to create the server, but this time the TCP-servgnagse handling of the
established connections to the available worker-components, that have athetie
server. In both cases, each of the components using the server maugipén a
connection with the server by using tG&®pen message, so that the server knows their
existence, before they can start sending or receiving data yiaf ahe TSI port. In this

example, the latter approach is used and the test system configuratiom Fsgase 5-9.

91

TSI component CM Class tcpServ SUT

I I
toX CM :
Worker pt_data s "myServ"\f|ﬁort

component ﬁﬂ
t

From components:

ciOpen.class.tcpServ.srvJoin
O ciClose.class.tcpServ.srvPart
Server |\ T ciControl.class.tcpServ.conn.accept
creator = A ciControl.class.tcpServ.conn.reject
component pt_ctrl /,O\\J pt_config || T ciControl.class.tcpServ.conn.close
T | T— -

To components:
ciStatus.class.tcpServ.conn.new

\\

From component: To component:
ciOpen.class.tcpServ.srvStart ciOpened.class.tcpServ

ciClose.class.tcpServ.srvStop ciClosed.class.tcpServ

Figure 5-9: Class “tcpServ’ example.

The server creator component is responsible for starting up thee@M called
“myServ”, which acts as a TCP socket server. After this, the worker comisanay join

with the server to make themselves known to it. The server nofifees worker
components about any new connections the SUT opens with the server. &r work
component can reply to the server whether it is willing to hanglariécular connection

or should the connection be closed by the server. Each of the wankgrocents is
mapped with the same TSI porpt”protoX ”, but they each communicate with

different SUT address via the server.

The test case components need a way to identify the used is¢hee€CM Class is such
that it supports several differently configured servers simuissig. The server
identifier could be given to the server by the component that sréater it could be
given by the CM Class of the server. If the identifier is gilsg the CM Class, it can be
made known to the test case components as one of the return valne€i@pened -
message that acknowledges the server creation. In this exduisgkedone the other way
round. The creator-component decides the identifier for the servedre sdass specific
part of theCiOpen message contains the server identifier as one of its fielddsdt

passes this identifier to all the worker-components it creates.

The following TTCN-3 type definitions are used to start up the server and to join it:

92

/I From common Connection Interface type definition s: e.g. CiMessages.ttcn3:
type record CiOpen

CiTsiPortld tsiDataPort optional,

CiOpenParams class

}
type union CiOpenParams

CmFrameRelay.Open frame,
/1 Open type from nodul e CnifcpServ:
CmlcpServ. Open tcpServ,

.

/I From TcpServ class specific definitions: e.g. Cm TcpServ.tten3:
type union Open

ServStart srvStart,
Servid srvJoin

}

type record ServStart

Port listenPort,
Servid servName

}

type charstring Servid length (1 .. 64);
type integer Port (1 ..99999);

To start a server, the server creator component first se@iSm@en message with the

following contents via its control port:

ciOpen.tsiDataPort := omit;
ciOpen.class.tcpServ.srvStart.listenPort := 5000;
ciOpen.class.tcpServ.srvStart.servName := "myServ";

ThetsiDataPort value is here omitted, because the server creator component has no

need for a data connection and it does not have a data port (see Figure 5-9).

This causes the CM ClasgcfiServ " to start up a new CM with namenyServ ",
which listens for incoming connections at TCP port 5000. The CM ackdgedethat it

is fully functional by sendin@€iOpened to the server creator component via the control
port. It is here assumed, that the server rejects any incommmgction attempts from the

SUT as long as there are no free worker components present.

To handle SUT established connections, the worker components makexib&nae
known to the server by each sendin@Ci®pen message via their control ports. The

message has the following contents:

ciOpen.tsiDataPort.name :="pt_protoX";
ciOpen.tsiDataPort.index := omit;
ciOpen.class.tcpServ.srvJoin := "myServ";

93

The CM System Component knows from tel®ataPort value via which TSI port a

component wants to open a data connection (with the server). The C8/tCheerv

knows from the server identifiermyServ", that a component wants to use this

previously created server. The CNtpServ " acknowledges to each of the worker

components with €iOpened , that the component is now connected with the server.

When the SUT establishes a connection with the server, the semiges one of the
joined components about this withGaStatus message, which contains the IP- and
port-address of the SUT. The component then decides whether it atweptsnection,
and sends its conclusion to the server i€i€ontrol message. If the component
accepted the connection, the server starts to forward any dateeceérom the specific
SUT address to the worker component via the chosen data port, aibehevay round.

In the case the component decided to reject the connection, the deses the TCP-
socket. The below code fragment shows the type definition dfitBentrolParams

union used in theCiControl message, and the class specific tygesmtrol and

ServConn :

/I From common Connection Interface type definition s, e.g. CiMessages.ttcn3:
type record CiControl

CiTsiPortld tsiDataPort optional,
CiControlParams class

}

type union CiControlParams

{

)).Control type from module CmTcpServ:
CmTcpServ.Control tcpServ,

-

/I From TcpServ class specific definitions, e.g. Cm TcpServ.tten3:
type record Control

Servid server,
ServConn conn

}

type union ServConn

IpAddrAndPort accept, // This alternative accep ts a connection
IpAddrAndPort reject, // This rejects
IpAddrAndPort close // This closes

}

When a worker component wants to close a connection assigned tosénd a

CiControl message with "close" instruction to the server. When a componatd tea

94

"part" the server, as opposed to joining it, or when it wants toddwh the server, it
sends an appropria@Close message to the server. TG&Closed message contains
a class specific part like i8iOpen andCiControl , with which the desired action is

chosen:

/I From common Connection Interface type definition s, e.g. CiMessages.ttcn3:
type union CiCloseParams

{

)).Control type from module CmTcpServ:
CmTcpServ.Close tcpServ,

}

//' Used in union CiCloseParams.
type union Close

{
Servld srvPart, // This alternative parts from a server
Servild srvClose // This alternative close s a server

}

5.5 Overview of CM System Interface

The CM System Interface (CSI) is used by the SA to usseiwces provided by the CM
System (Component). There are three categories of operatiotiee aEM System
Interface: system, class, and connection. With the system dgeeations the SA can
initialize and shutdown the whole CM System. The class levehtipes are used by the
SA to register the used CM Classes into the system. Intnagea of a class the SA
passes an interface object or method to the CM System. Thifac# object is used by
the CM System Component to call classes’ implementations oClheClass Interface
operations, which are explained in the next section. Once theraéigistis completed,
the SA can instruct the CM System Component to call the cfassfis initialization
function of each class. During test case execution, the SA usesnhection level
operations to forward the TRI operations resulting from Conneatitemface operations
to the CM System to be handled.

The connection level operations are listed in Table 5-5. Whestacéase component
wants to open a new connection by usingdi@pen() operation (5.2.4, 5.4.2), this is
seen by the SA as theSend() operation at the TRI interface. Because the SA does
not know which TSI ports are control ports, it does not know whether the

sendMessage parameter of th&iSend() contains a control message or user data.

95

Table 5-5: Connection operations of CM System Interface.

Category: Call Direction: Operation I dentifier:
Connection SA > CM System Comp. | csiConnDecodeOp:
SA > CM System Comp. csiConnOpen
SA > CM System Comp. csiConnControl
SA > CM System Comp. csiConnClose
SA > CM System Comp. csiConnSend

SA > CM System Comp. | csiConnCall
SA > CM System Comp. | csiConnReply
SA > CM System Comp. | csiConnRaise

SA > CM System Comp. | csiConnTerminate

The CM System Component provides operattsiConnDecodeOp() to the SA,
which identifies the message for the SA and tells it whatii@&iface operation it should
call to handle the message. If the message was receivadl\8& control port, then it is
assumed to contain a control message, such asi@pen message encoded in the
format of CmSysControlMessage (specified in Table 5-3). In this case the
csiConnDecodeOp() also decodes the message. If it was received via a TSI data po
then it contains user data and no decoding is done. Because inxdnple the
sendMessage does contain theciOpen message, thecsiConnDecodeOp()
decodes it and instructs the SA to call tbeiConnOpen() with the decoded values.
After this the SA has done everything needed. All th®end() invocations are

handled in this way.

In the case of procedure-based operation (sudalas), the SA calls directly the right
CSI operation ¢siConncCall() , csiConnReply() , csiConnRaise()) without
first consulting the decode operation, because the procedure-based coationurtian

contain only user data.

The operations and data types of the CM System Interfacepao#iad in detail in
Appendix A.1

96

5.6 Overview of CM Class Interface

The CM Class Interface is the interface between the Céfle8yComponent and the CM
Classes. The operations consist of class and connection level apgratnd of an
encoding operation. With the class level operations the CM Syswmpdhent can
initialize the CM Classes before they are used. The conndetiehoperations provided
by the CM Classes correspond with the connection level operatiohe @ISl interface
(previous section), and they asx&iConnOpen() , cciConnControl() , cciConn-
Close() , cciConnData() , and cciConnTerminate() . The cciConnData
operation groups together all the non-configuration operaticeBCgnnSend()
csiConnCall() , csiConnReply() , csiConnRaise()). All these CM Class

Interface operations are implemented by the CM Classes in a claggspaaoner.

The CM System Component provides operationsiConnClosed() and
cciEncodeCiCtrlOp() to the CM Classes. The operatiotiConnClosed() IS
used by the CM Class or its CMs to indicate to the CM 8yfmmponent when a
connection is closed without the CM System Component requesting o ihat it
knows to update itsontrolMap andhandlerMap data structures accordingly. When
a CM wants to send a Connection Interface level mes<@i@péned , CiClosed |,
CiStatus) to the test case component, it can c&ncodeCiCtrlOp() to do the
encoding of the CI control message i@mSysControlMessage format (Table 5-
3). Thus, the CM Classes and their CMs do not need to known the treyrsfe@x of the

Connection Interface control messages, except for their own classcspacifimeter part.

The operations and data types of the CM Class Interface ardiexspen detail in
Appendix A.2.

5.7 Overview of Mapping Interface

Mapping Interface (Ml) is a small interface between thesCiid the SA, and all the
operations are provided by the SA. With these operations the CMdaand release a
test case component identifier and a TSI port identifier stor¢lde SA’stsiMap data

structure for a small duration of time, when it is about to enqueuesaage or procedure

97

operation to the test case component by using a TRI intetfdeequeue*()
operation. The CM usesiConnld (explained in 4.3.2, 4.3.3) as the key to query for a
(component identifier, TSI port identifier)—pair. If no pair matchingth the
csiConnld can be found, the CM knows from this that the component has unmapped
its port from the TSI port, and it does not try to communicate wvit'lhen a (component
identifier, TSI port identifier)—pair is found, it becomes locked fier €M. If the SA tries

to call the triUnmap() operation while a pair is locked, it becomes blocked in
invocation of the operation (see section) 3.8ntil the pair is released by the CM. This is
needed to avoid the situation in which a CM might call a TRI ojperatith invalid out-
of-date values. The TTCN-3 standard does not specify what resh# of using out-of-
date values, hence this interface is used to avoid any undesftdats on the test case
verdict and to make the system more portable between diff@f@GN-3 tools of

different vendors.

This interface specifies only the lock and release operations used ®ittend they can
be found in Appendix A.3. In addition to these, the SA has to implemdsiNtap data
structure andriUnmap() operation in such a way that they take the locking into

account.

98

6 CONCLUSIONS

In the first part of this thesis work an overview of the TTCN-3eClomngue was given
and it was explained what kind of entities and standardized ioésrfaxist in TTCN-3
test system. In the second part it was shown how one could desitje aop of the

TTCN-3 standard such a connection management system, that providésrsausly

several kinds of the connection means with the SUT. These diffevenection means
can be used in a uniform way from TTCN-3 test cases, and whenmeams are
developed, these can be easily added into the system without brel&irexisting

TTCN-3 source or SUT Adapter code.

When designing new CM Classes one needs to consider how the camneghagement

related parameters are seen at the test case levieé lmser. Are they made easy to be
encoded into to a transfer syntax form, or are they designedcebasyused by the user

and perhaps bit harder to be encoded. Some thought needs to be put on how codecs can be
taken into use in the chosen TTCN-3 tool, and how they are designed @ecthented.

This is needed to avoid situations in which addition of a new fe&dtype, or changing a

type identifier breaks an existing codec. Designing a genericdndesing the interfaces
provided by the standard can be difficult, thus in this work an ideaCdfl £lass Codec

System was introduced. It helps in adding new classes intg/sbens without breaking

the codecs of the Connection Interface messag&3pen, CiOpened , and so on), by

giving the codecs of these types an access to the class specific codecs.

What was not considered in this work are the exact language myapjsuch as for C or
Java) of the CM System Interface, the CM Class Interfaicd,the Mapping Interface.
The types used in the interfaces probably need own functions with wigghcan be
operated. For example, there could be a function or a method thatatgena
csiConnld identifier from the component and port identifiers that are redemagethe
parameters of thé&iSend() operation. When designing language mappings of the
interfaces, one needs to consider how parameters are passed awegrthees. In the
given abstract interface specifications all the values ssenaed to be passed safely by

copying. In a real implementation this pass-by-copy would bdigrezft. Based on the

99

experience gained on the prototype code that was written dilnimghesis work, one

should be able to rather easily specify the interfaces in a way that avoids eapging.

A topic that was not considered in the text is how the used TI@pes should be
grouped into modules, and what kind of TTCN-3 types, templates, funetnohaltsteps
the modules of the different CM Classes should provide. The definitteted to a CM
Class could be stored into an own module, but this class specific noadidebe divided
even further: the (public) definitions required to use the serviamsded by the class
could be stored into one module, and the (private) definitions that edebysthe class
internally could be stored into another module. TTCN-3 Core Languageaies also a
language element callegtoup , which can be used to group definitions within a single
module. It could be used if it turns out that it is more feasthleeep the definitions in a
single module, instead of having a public and a private module. A comnmimgha
convention used in the modules of the different CM Classes might ertbnsidering.
If the “top level” error handling altstep provided by every slasere titled as

“alt_errorTop” , then the user would directly know which altstep to use.

The test case writer can open connections by using the Connectdiadatoperations
directly. Instead of having to write the operation parametedsthe port statements each
time by hand, it could be required that every CM Class provideg af functions and
default altsteps for doing this on the behalf of the test caserw8ome functions and
altsteps could be mandatory for every class (such as the oregsoiohandling) and they
could use similar parameters differing only in their type buimtteir meaning. Another
useful feature would be to have some kind of centralized error hantdingaduld be
started in one of the test case components. It would take camstifcting all the test
case components to close their connection, when there is a problerongitbf the
connections. If this kind of centralized error handling was desighetipuld work over

the CM Class boundaries by being able to shutdown connections of any kind.

In the text the Connection Managers were presented as erthiiemaintain connections
with the SUT. However, nothing prevents the Connection Managerovaerservices
other than connections with the SUT. They could be data generatéfis,gemerators,

databases, script language interpreters, or any other kind afesetirat might be utilized

100

during a test case. Usage of the Connection Interface operatitericase would mean

establishing connections with these service providers.

As it was mentioned in the Introduction, as of writing this thesigk there is not much
literature or other material available on TTCN-3 and SUT Adagésign. This thesis
raised issues that need to be considered in the adapter desigit, spetified a
framework, which supports several kinds of connection means with tHe Bhe
framework should prove very useful over time when new kinds of taagetaeeded to
be tested. If a framework like the one presented or one withasiwalpabilities was
widely used and its interfaces were made public, then differentpames and
communities could participate in the development of free and comin@amnection
Manager plug-ins. One could then expand the capabilities of an owsysem with
these plug-ins without the fear of losing any already existmgtionality, thus greatly
reducing time and resources spent in making changes to thegsigstem, before new

kinds of targets can be tested.

101

REFERENCES

[T3CORE]

[T3TFT]

[T3GFT]

[T30S]

[T3TRI]

[T3TCI]

[T3MOCKUP]

[TIMED]

[UNIX]

ETSI ES 201 873-1 V2.2.1 Methods for Tegtand Specification (MTS); The Testing
and Test Control Notation version 3; Part 1: TTCR«&e Language. France:

European Telecommunications Standard Institute32008 pages.

ETSI ES 201 873-2 V2.2.1 Methods for Tegtand Specification (MTS); The Testing
and Test Control Notation version 3; Part 2: TTCNe&bular presentation Format
(TFT). France: European Telecommunications Stanbfestidute, 2003. 33 pages.

ETSI ES 201 873-3 V2.2.2 ETSI Standard Melthfor Testing and Specification
(MTS); The Testing and Test Control Notation vens® Part 3: TTCN-3 Graphical
presentation Format (GFT). France: European Telenamtations Standard Institute,
2003. 165 pages.

ETSI ES 201 873-4 V2.2.1 Methods for Testimgl Specification (MTS); The Testing
and Test Control Notation Version 3; Part 4: TTCI{8erational Semantics. France:

European Telecommunications Standard Institute32088 pages.

ETSI ES 201 873-5 V1.1.1 Methods for Tegtend Specification (MTS); The Testing
and Test Control Notation version 3; Part 5: TTCRhtime Interface (TRI). France:

European Telecommunications Standard Institute3 289 pages.

ETSI ES 201 873-6 V1.1.1 Methods for Tegtend Specification (MTS); The Testing
and Test Control Notation version 3; Part 6: TTCReéhtrol Interface (TCI). France:

European Telecommunications Standard Institute32006 pages.

ETSI ES 201 873-1 V3.0.0Mockupvl Methdds Testing and Specification (MTS);
The Testing and Test Control Notation version 3t RaTTCN-3 Core Language.

France: European Telecommunications Standardutesti2004. 190 pages.

Dai, Z. R., Grabowski J., Neukirchen H. Témt TTCN-3 — A Real-Time Extension for
TTCN-3. TestCom 2002: Testing Internet Technologied Services, The IFIP 14th
International Conference on Testing of Communica8ystems, March 19th - 22nd,
2002, Berlin. Kluwer Academic Publishers, March 200p. 407-424.

Stevens, Richard W. UNIX Network Programmingolume 1, 2nd edition. Prentice
Hall, 1998. 1009 pages.

102

APPENDICES

A INTERFACES IN DETAIL

A.1 CM System Interface

The CM System Interface is used by the SA to use the seryimvided by the CM

System. There are three categories of operations at theyStdn® Interface. The ones
that affect the system as a whole are prefixed wigi “. With these, the whole CM

System is initialized before it is taken into use, and findliaden its services are not
needed any more. Similarly, the operations used at connectiorgenariass level have
“csiClass " prefix. With these operations the classes are registerdteteystem and

initialized before taken into use. The operations that are used to @m#ml,cand close

connections, and to send data through them, begin WRICOnn ” prefix. All the

operations are procedure calls and they are listed in Table A-1.

Table A-1: Operations at CM System Interface. Decode Pogr&jon is used >

identify the connection related operations thatlisted below it.

SA > CM System Comp.
SA > CM System Comp.
SA > CM System Comp.
SA > CM System Comp.
SA > CM System Comp.
SA > CM System Comp.
SA > CM System Comp.

Category: Call Direction: Operation Identifier:
System SA > CM System Comp. | csilnit

SA > CM System Comp. | csiFinalize

SA > CM System Comp. | csiReset
Class SA > CM System Comp. | csiClassReg

SA > CM System Comp. | csiClassDeReg

SA > CM System Comp. | csiClasslnit

SA > CM System Comp. | csiClassFinalize
Connection SA > CM System Comp. | csiConnDecodeOp

csiConnOpen
csiConnControl
csiConnClose
csiConnSend
csiConnCall
csiConnReply

csiConnRaise

SA > CM System Comp.

csiConnTerminate

103

A.1.1 Data types

The following abstract data types are used with the CM System |reernfecations.

Table A-2: Data types at CM System Interface.

Type | dentifier:

Description:

CsiCharacterType

This type can hold a single character value.

CsiCiOpldType

Each of the Connection Interface operations hasgue identifier at SA
and CM System implementation language level. Thiswerated type
provides identifiers for the operationsiCiOpenld , csiCiOpenedid
csiCiControlld , csiCiStatusld , csiCiCloseld
csiCiClosedld , csiCiDatald , and csiCiDatalndld

NOTE: When a component sends a Cl control categ@ysage (5.2
Connection Interface), the CM System Component csi€Openid
csiCiControlld , andcsiCiCloseld values to determine which
operation is in question (A.1.2 OperationsiConnDecodeOp()). When
a CM or CM Class wants to build a CI control catggnessage with the
CM System Component provided operatémiEncodeCiCtrlOp()

(A.2.2 Operations), the valuesiCiOpenedld , csiCiStatusid , and
csiCiClosedld are used to determine which message should be buil
The valuegsiCiDatald andcsiCiDatalndld are not used in this

document.

NOTE 2: This type is of fixed length.

CsiClassDataType

A value of this type contains CM Class specificfoguration data of a
Connection Interface operation encoded in a clpssific form. It contains &
length field, and the data field. The CM Class diesencoding and

decoding of the data, thus its contents are ndtleiso the CM System

Component.

1

CsiClasslfaceType

A value of this type contains a method for accassiie CM Class Interface
operations of a class (see Table A-4). Dependingnplementation
language, the method can be a function pointey afrghe class operations
or it can be an interface object that providescthss operations as its

methods.

104

Table A-2: Data types at CM System Interface. (continued from the previous pa

Type | dentifier:

Description:

CsiConnldType

Unique identifier for a connection. It containddi®String
componentinstString , String portNameString , and
CsilntegerType portindex , which contain values as explained in
Section 4.3.2. A special null valuesiNoConnld , can be used as the
value for non-existing connections. This specidli#aontains zero length
componentinstString andportNameString values, and -1 as the

portindex value.

CsiConnParamsType

Base class type for the following typ&siCtrlParamsType , and
CsiDataParamsType

CsiCtrlIParamsType

Record with fields:
String csiClassld

CsiClassDataType csiClassData

CsiDataCallType

Record with fields:

TriSignatureldType signatureld

TriParameterListType parameterList

The both field types are specified in [T3TRI: £8.3]]. The values stored

into the fields are the parameters of th€all() operation.

CsiDataMsgType

A value of this type contains&iMessageType sendMessage .

CsiDataParamsType

Base class type for the following typ&siDataMsgType
CsiDataSigType

CsiDataRaiseType

Record with fields:

TriSignatureldType signatureld

TriExceptionType exception

All the field types are specified in [T3TRI: s. 2B and the values stored

into the fields are the parameterdrifRaise() operation

CsiDataReplyType

Record with fields:

TriSignatureldType signatureld

TriParameterListType parameterList

TriParameterType returnValue.

All the field types are specified in [T3TRI: s. 2B and the values stored

into the fields are the parameterdriReply() operation.

CsiDataSigType

Base class type for the following typ&siDataCallType
CsiDataReplyType , andCsiDataRaiseType

CsilntegerType

This type can hold a single signed integer valufixefd length.

105

Table A-2: Data types at CM System Interface. (continued from the previous pa

Type | dentifier:

Description:

CsiOpldType Each of the test case component initiated Connedtiterface operations
has a corresponding CM System Interface operafiaoh of these CSI
operations has unique identifier, which can ontheffollowing:
csiConnOpenld , csiConnCloseld |, csiConnControlld ,
csiConnSendld |, csiConnCallld , csiConnReplyld , and
csiConnRaiseld
Of these, thesiConnSendld |, csiConnCallld
csiConnReplyld , andcsiConnRaiseld , are used with the
cciConnData() operation to identify which particular operaticnimn
question.

CsiPortldListType A list of values of typeCsiPortldType

CsiPortldType Record containing port name and port index fielithe
TriPortldType

CsiStatusType This type has two values: CSI_OK, and CSI_ERR. C8é& OK value is
returned by the CSI operations, when the operaiatinvas successful.
CSI_ERR is returned otherwise. In the case of CRREhe effect of the
operation call is the same as if it was never dalle

String This type can hold a sequence of character valilben the implementation
language is Gchar* can be used. In the case of Java,
java.lang.String can be used.

TriAddressType Type defined in TTCN-3 Runtime Interface standar@TRI: s. 5.3.2]. A

value of this type addresses an entity within tbd Sts TTCN-3 Core

Language counterpart is the typadress .

TriComponentldType

Type defined in TTCN-3 Runtime Interface standar@TRI: s. 5.3.1]. A

value of this type identifies a test case companent

TriPortldListType Type defined in TTCN-3 Runtime Interface standar@TRI: s. 5.3.1]. A
value of this type contains a list of values ofdyipiPortldType
TriPortldType Type defined in TTCN-3 Runtime Interface standar@TRI: s. 5.3.1]. A

value of this type identifies either a TSI portaocomponent port, dependin

on the TRI operation in which it is used.

106

A.1.2 Operations

The following procedure operations are specified at the CM System t#erfa

csilnit (SA > CM System Component)

In:

Return:

Purpose:

When:

CsiPortldListType controlPorts
List of the TSI ports that are used as the control ports by default. There has to

be at least one.

CsiStatusType csiStatus

Status code of the operation call.

This operation is used by the SA to initialize the CM SystBnring the
initialization, the CM System Component may initialize its riné& data
structures and do memory allocations if required. As a paramettrisof
operation the CM System Component receives a list of the pottarthased
as control ports. After the initialization, the CM System Compbreready

to acceptsiClassReg() operation calls.

A) At the start-up procedures of the test executable. How thaliration
operation is called depends on the tool that produces the test &esiitam
the TTCN-3 modules.

B) This operation can be called tool-independently dutiiiekecute-
TestCase() operation, but the CM System Component is possibly

unnecessarily initialized at the beginning of every test case.

C) At the control part of a TTCN-3 module this can be callett WiECN-3
external function call or action statements, before any éss&iscare executed.
This is seen by the SA asAction() or triExternalFunction-

Call() operation, from which this operation can be called. Because the
control part of a TTCN-3 module is optional, and the TCI Test Mamagt

interface [T3TCI: s. 7.3.1] allows starting of test case®ctly without

107

executing the control part, it possible that the initializatiommistakenly

excluded by the test case executor. This approach is tool independent.

D) Another tool independent approach is to perform this operation cineng
first test case of a test suite with an external functadhor action statement.
It is also possible to use a special identifier for the teste (such as

tc_initCmSystem), so the SA knows by it to call this operation.

E) Yet another approach is that the SA is instructed to callojeration in

the preamble part of each test case.

The advantage of the alternatives in which the initializatioraitest from the
TTCN-3 language level is that the identifiers of the controlspofithe used
TSI can be passed down to the CM System; the control ports do notohave
be fixed, they can vary between the test cases or test.sliite drawback is

that the test case user has to remember to do this.

csiFinalize (SA > CM System Component)

Purpose: With this operation the SA tells the CM System to shutdown. Tdmsists of
calling the finalization operations of any present connection maicéagses
and releasing of any dynamically allocated memory. Aftes timeration no
connections to SUT exist, and no other operations ¢sdnit() can be

used.

When: A) During finalization procedures of the test executableudhsexist. This

approach is tool dependent.

B) At the control part of a TTCN-3 module, like in the case ofaliation.
This approach is tool independent.

C) DuringtriSAReset() operation. Problem witlriSAReset() is
that is not visible to TTCN-3 language level. There is no cpomrding
TTCN-3 statement, hence it may vary from tool to tool when thisatiperis

called. This approach is tool dependent.

108

D) In the last test case of the suite, the only purpose ohwibito shutdown
the CM System. The test case identifier (sucttaBhCmSystem) can be
used to inform the SA that it should shutdown the CM System. Thisagpro

is tool independent.

csiReset (SA > CM System Component)

Purpose:

When:

This operation is used to clear any connection related data tfrenCM
System landlerMap , controlMap) and to close any possibly open
connections. The CM System Component calls the reset operationsrgf ev

registered class during this operation.

This operation is blocking to the caller and will not return until th#
connections have been successfully closed and all connection cdddekias

been cleared.

DuringtriSAReset() operation.

csiSetControlPorts (SA > CM System Component)

In:

Return:

Purpose:

TriPortldListType tsiPortList
List of the current TSI ports that are used as the control ports. There has to be

at least one in the list.

CsiStatusType csiStatus

Status code of the operation call.

This operation is used by the SA to tell to the CM System@bnent what
TSI ports exist in the current test case. The CM System Comppracesses
the input parametasiPortList , and checks from each port in the list if it
is of typeCiCfgPort (defined in Section 5.2.2). If it is of the control port
type, then the CM System Component marks into some internal ettt
that the port should be treated as a control port. This operation @dse ahy

previously existing control port information.

109

When:

Note: This operation can possibly be used only in a C implementatitike U
the C mapping of th&riPortld type, the Java language mapping does not

provide a method with which one could ask the type identifier of the port.

During triExecuteTestCase() , If it is wanted that the TSI control

port(s) can be different in every executed test case.

csiClassReg (SA > CM System Component)

In:

Return:

Purpose:

When:

String csiClassld

Class identifier of the to-be-registered class.

CsiClasslfaceType csiClasslface
Method for the CM System Component to call the class specific operations
described in A.2 CM Class Interface.

CsiStatusType csiStatus

Status code of the operation call.

This operation is used to register all the available CM f€kmsnto the CM
System, after which the transmission means provided by thempresent in
the system. A class is registered into the system byarse, which is the
same as the field name of the classGrOperationName>Params

union type. The union types are defined in the Connection Interfaces(3-abl
2, Figure 5-4). As the result of this operation, the CM System Compoaent
use csiClasslface to access the CM Class Interface operations of the

registered class.

After thecsilnit() operation has been performed. The class information
can be stored in a configuration file from which it is passed t€Meystem
Component with this operation, or the class information can be hard code

into the function, which calls this operation.

110

csiClassDeReg (SA - CM System Component)

In:

Purpose:

When:

String csiClassid

Class identifier of the to-be-removed class.

With this operation it is possible to remove class information peaiously
registered CM Class from the CM System, if this is resglfor some reason.

After this operation the CM System Component has no knowledge on the

removed CM Class, hence the transmission means provide by the demove

class is not available anymore. This operation performs thile Glass

Interface operatiorcciClassFinalize() to the class.

When the class has been first registered into the systetm thie

csiClassReg() operation.

csiClassinit (SA - CM System Component)

Return:

Purpose:

When:

CsiStatusType csiStatus

Status code of the operation call.

With this operation the CM System Component is instructed tdlealtlass
specific initialization operations of every registered CM Elaster this, the

classes are ready to provide connection managers of their kind.

After all the classes have been registered with d¢hi€lassReg()

operation.

csiClassFinalize (SA - CM System Component)

Purpose:

When:

This operation is opposite to the Class Initialize function. Allrésources
reserved by the registered connection manager classeseateif the system

by calling their class specific finalization operations.

This operation is automatically called from tbgiFinalize operation.
The SA can also call this explicitly, if the classes aamted to be finalized

separately from the whole CM System.

111

csiConnDecodeOp (SA > CM System Component)

In:

Out:

Return:

Purpose:

CsiConnldType csiConnld

The SA derives this value from théSend() operation parameters as
shown in Figure 4-7. In the case thi&end() operation call is a result of
a test case calling tte@Open() , theciControl() , or theciClose()
operation, the value @siConnld identifier a control connection;

otherwise it identifies a data connection.

TriMessageType sendMessage
Encoded control data in the format@inSysControlMessage , or non-

control data in any user specified format.

CsiOpldType csiOpld

Identifier of the resulting CSI operation.

CsiConnldType csiDataConnld
| dentifier of the data connection that will be the target of the CSI operation

specified by the output paramet=iOpld

CsiConnParamsType csiConnParam
Containsa parameter value for tlesiConn*() operation, that is identified

by the output parametesiOpld

CsiStatusType csiStatus
Status code of the operation call. The return value is CSI_ERR, if the to be
decoded data could not be decoded, or if the CSI System has not been

initialized. CSI_OK is returned otherwise.

When a message-based Connection Interface operation is performeskin a
case, that is seen as taSend() operation at the TRI interface.
CsiConnldDecodeOp() is used to decode the corresponding CSI
operation from thesendMessage parameter of th&iSend() operation
(see MSC diagrams B.1, B.2, B.4). The decoding is done by the CivhByste

Component, because the used transfer syr@aS{ysControlMessage |,

112

Table 5-3) is an internal matter to the CM System, and itaisted that the

CM System is independent from the SA implementation.

If the port identifier within the in-parametesiConnld is identified as one

of TSI data ports by this operation, then semdMessage is not decoded,
because it contains only user data, which should be delivered a® ithis
SUT. The resulting CSI operation in this cases&ConnSend() , thus the
output parametecsiOpld is set to valuecsiConnSendld , the output
parametecsiDataConnld is set to the same value as the input parameter
csiConnld has, and the output parametsiConnParam is set to a value

of type CsiDataMsgType , which contains the in-parameter

sendMessage .

If the port identifier within the in-parametesiConnld is identified as one
of the control ports, then this operation decodessdm@Message , which
contains data in the format @mSysControlMessage (Table 5-3). The

following information is decoded:

CsiCiOpldType ciOperationid
String tsiPortName
CsilntegerType tsiPortindex
String csiClassid

CsiClassDataType csiClassData

Based on this information and the in-parame®@Connld , the values for
out-parameters are determined. The resulting CSI operation andldkeofa
out-parametecsiOpdid depend on the decodedDperationid value

according to the table below:

Table A-3: Mapping from the CI operations to the CSI operai

ciOperationld value | Resulting CSl-op. Corresponding csiOpld value
csiCiOpenid cgiConnOpen() csiConnOpenld

csiCiControlld csiGonnControl() csiConnControlld
csiCiCloseld csiConnClose() csiConnCloseld

113

When:

For example, if the decodeaiOperationld value is equal to
csiCiOpenld , the out-parameter csiOpdid is set to value
csiConnOpenld , and based on this value the SA knows to call the CSI

operationcsiConnOpen()

The output parametecsiDataConnld is built from the decoded
tsiPortName and tsiPortindex values, and from the
complnstString field of in-parametecsiConnld (Figure 4-7 shows

the contents of th€siConnld type). If this built value equals to the special
value csiNoConnld , then the test case component that sent the
sendMessage did not specify any data port. This means that it wants to
have a control connection without any data connections with the class
specified by the decodemsiClassld value. In any case, the value of the

output parametersiDataConnld is built it this manner.

The out-parametelCsiConnParamsType csiConnParam is set to
contain the decodeckiClassld andcsiClassData stored into a value
of type CsiCtrlParamsType . (CsiConnParamsType is the base type
for the typeCsiCtrIParamsType .)

After this operation, the SA knows which CSI operation it should perform
(csiOpld), what data connection the operation concerns
(csiDataConnld), and what other parameters the operation has

(csiConnParam).

During triSend() operation, that is executed as a result of a message-
based Connection Interface operation at the TTCN-3 language ldvsl. T
operation may not be called from ttnieCall() , thetriReply() , or the
triRaise() operation, because the CM System Interface operations result

from message-based Connection Interface operations only.

114

csiConnOpen (SA - CM System Component)

In: CsiConnldType csiCtrlConnlid
Identifier of the control connection that is used for controlling the data
connection, which is identified by the in-parametgDataConnld . The
value of thecsiCtrIConnld is derived by the SA from theSend()
operation’s in-parametetsiPortld andcomponentld . This is the
same value the SA used as the input paramest€onnid of

csiConnDecodeOp()

CsiConnldType csiDataConnld

Identifier of the data connection that should be opened. This is the same value
that the SA received as thsiDataConnld out-parameter of the
csiConnDecodeOp() operation. In the case a test case component has no
data ports, i.e. it does not want to open a data connecsidgtaConnld

has the special valuwesiNoConnld

CsiCtrlIParamsType csiCtrlParams

This value contains identifier of the used CM Class and encoded parameter
data for the class. The parameter data is only meaningful to the CM that is
handling the connection, thus the CM System Component passes the
parameter data to the CM without trying to interpret it. This value is the same
value the SA received as out-parameg€ConnParam of

csiConnDecodeOp() call.

TriAddressType sutAddress

This is thesutAddress value that was received by the SA as a parameter of
thetriSend() operation. This parameter value is meaningless to the SA
and to the CM System Component, but it may be used by the CM Class to
determine the SUT end-point of the connection.

Return: CsiStatusType csiStatus
Status code of the operation call. This value is CSI_ERR, if the CM System
Component is unable to handle the operation request due to non-initialized

115

CM System Component, non-existing CM Class, insufficient resources, or

due to any other reason. CSI_OK is returned otherwise.

Purpose. With this operation the SA can request the CM System to open a new
connection as the result of the Connection Interfa@pen() operation,
which has been performed in a test case. The CM System Comptamenas
new connection manager to handle the connection, by using the CClaaterfa

operationcciConnOpen (MSC diagram B.1).

The opened connection can be either a data connection, or a stand-alone
control connection. If the input parametsiDataConnld contains value

other thancsiNoConnld , then a data connection is opened, and it is
controlled by the control connection identified waiCtrIConnid . If the
csiDataConnld parameter value is equaldsiNoConnld , then a stand-

alone control connection is opened.

The CM System Component stores the mapping fronegt@&triConnlid
parameter value to thesiDataConnld parameter value into its
controlMap , to know which data connection is controlled by which control
connection (Figure 4-8). This information is needed by the System
Component to be able to terminate all the data connections relatbd to
control connection, in the case the SA orders to do so by calling

csiConnTerminate()

From the input parametesiCtrIParams the System Component gets the
identifier (csiClassld) of the class, whoseciConnOpen() it should
call to request the class to create a new CM to handle the tomes the
result of successful CM Class Interfam@ConnOpen() call, the System
Component receives tleeiCmld , which identifies the CM, that handles the
connection (A.2.2 Operations contains more details on the CM Cladadeter

Operations).

If the input parametecsiDataConnld has the value ofsiNoConnld

meaning that no data connection is specified, the System Compéoest s

116

When:

the mapping fromcsiCtriConnlid to (csiClassld , cciCmld)—pair
into its handlerMap data structure (Figure 4-8). Otherwise, the System
Component stores the mapping from theiDataConnid value to

(csiClassld , cciCmid)—pair.

After this, if the csiDataConnid contained a value other than
csiNoConnld , the System Component knows which CM handles this
opened data connection. Other wise it knows which CM handles the stand-

alone control connection identified bgiCtriIConnld

This operation returns once the CM System Component has determined,
whether it is capable of requesting a class to createva CM for the
connection. This does not necessarily mean that the CM System Component
requests a CM Class to create a new CM during this operatiae this
operation call may be buffered and handler later by the CM r8yste
Component (A.2.2 Operations explains buffering further).

When a new connection is requested to be opened in a test castevit
ciOpen() operation of Connection Interface, that is seen as this operation at
the CM System Interface. MSC diagram B.1 shows how the operati
propagates through the interfaces.

csiConnControl (SA - CM System Component)

In:

CsiConnldType csiCtrlConnlid
This is the same value the SA used as the input paracsé@amnid of
csiConnDecodeOp()

CsiConnldType csiDataConnld
Identifier of the data connection that should be controlled. This is the same
value the SA received as theiDataConnld output parameter of

csiConnDecodeOp()

CsiCtrlIParamsType csiCtrIParams

This value is used as asiConnOpen() operation, and it was received by

117

Return:

Purpose:

When:

the SA as the output parametsiConnParams of

csiConnDecodeOp()

TriAddressType sutAddress
The sutAddress that the SA received as a parameter otttis=nd()

operation.

CsiStatusType csiStatus

Status code that is used in the same way esi@onnOpen()

With this operation the CM System Component is instructed to pamstal
message to a connection manager. The control message may fpteeaskn

a connection manager to report its status to a test case comptment,
configure a sub-connection for a particidatAddress value, or to modify

certain parameters of the connection.

The CM System Component uses thandlerMap data structure to
determine the identifier of the connection manageigmlid) to which the
control message should be delivered (Figure 4-8). SincéahdlerMap
contains mappings from values of typeCsiConnldType to
(csiClassld , cciCmld)—pairs, it depends on the values of the input
parametercsiDataConnld andcsiCtriConnld which one of them is
used as the connection identifier to find the matchiogiClassid
cciCmld)—pair. If csiDataConnld has the value otsiNoConnid
then csiCtrlIConnid is used to find the right pair. Otherwise,

csiDataConnld is used.

The CM System Component usesiConnControl() of the class

csiClassld to pass the control request to the right connection manager.

When an existing data connection or a stand-alone control connectia is
to be controlled in a test case with #i€ontrol() operation, that is seen
as this operation at the CSl-interface. MSC diagram B.2 iitestrthe how

the operation propagates through the interfaces.

118

csiConnClose (SA -> CM System Component)

In:

Return:

Purpose:

CsiConnldType csiCtrlConnlid
This is the same value the SA used as the input paracsé@amnid of
csiConnDecodeOp()

CsiConnldType csiDataConnld
Identifier of the data connection that should be closed. This is the same value
the SA received as tlwsiDataConnld output parameter of

csiConnDecodeOp()

CsiCtrlIParamsType csiCtrIParams
This value is used as asiConnOpen() , and it was received by the SA as

the output parametesiConnParams of csiConnDecodeOp()

TriAddressType sutAddress

This is thesutAddress value that was received by the SA as a parameter of
thetriSend() operation. The value is meaningless to the SA and to the
CM System Component, but it may be used by the CM Class to determine

what is the SUT end-point of the connection that will be closed.

CsiStatusType csiStatus

Status code that is used in the same way esi@onnOpen()

With this operation the CM System Component is instructed to close a
connection. The CM System Component starts the closing procedures by
calling cciConnClose() operation of the class interface. For the
cciConnClose() call the CM System Component needs to know the
identifier of the CM ¢ciCmld) that is handling the connection, and which
CM Class is in question c¢iClassld). Identically to
csiConnControl() operation, the CM System Components uses the
handlerMap data structure to find the rightcéiClassld , cciCmid)

pair, by using either the input parametasiCtriConnld or

119

csiDataConnld as the key, depending on whether ¢sataConnid

is equal to constamsiNoConnld or not (Figure 4-8).

After calling cciConnClose() , the CM System Component can remove
the csiDataConnld to (csiClassld , cciCmid)—pair entry from its
handlerMap , if csiDataConnid iIs not equal to constant
csiNoConnld . Otherwise thecsiDataConnid to (csiClassld
cciCmld) entry is removed (Figure 4-8). The CM System Component also
removes from its controlMap the mapping entry between

csiCtrlIConnld andcsiDataConnld

NOTE: The SA may not remove the entries corresponding to
csiCtriIConnld andcsiDataConnld from itstsiMap- data structure.
These entries are still needed by the CM to acknowledge to shedase
component when it has closed its connection with the SUT. This iaiegl
in Section 5.2 Connection Interfac&losed() and in A.3 Mapping

Interface.

When: When an existing data connection is closed in a test casehwitbannection
Interface operatiortiClose() , that is seen as this operation at the CSI
interface. MSC diagram B.4 shows how the operation propagates through the

interfaces.

CsiConnTerminate (SA -> CM System Component)

In: CsiConnldType csiConnid

SA generated identifier for the connection that should be terminated.

String reason

A string containing the termination reason. It can be for example “unmap”.

Purpose: This operation is used by the SA to instruct the CM System ruefidly
terminate a connection and the connection manager handling it. Asstlig r
all the buffered data related to the connection is immediatetardisd and

the connection manager is terminated.

120

When:

If the csiConnld is an identifier of a control connection, then all the related
data connections are also terminatediGonnld contains identifier of a
port, and the CM System Component knows which ports are control ports,
hence it knows ifcsiConnld identifies a control connection). The CM
System Component can usmntrolMap to determine what are the

identifiers of the data connections to be terminated.

The identifier of the CM handling the connection(s) and its classe found
from handlerMap . The CM System Component terminates all the related
connections by callingciConnTerminate() operation for each of them
(see A.2.2 Operations for more details on calling the CM Classfdoe

Operations).

The termination reason stringeason is passed by the CM System
Component to the CM that is handling the connection, which in turn may
notify a test case component about termination of the connection veifoe

message including tlreason string.

After calling cciConnTerminate() , the CM System Component clears
the entries corresponding the identifemiConnld from its handlerMap

andcontrolMap

The difference between this ardiConnClose() operation is that this
operation is initiated by the SA as a resultrdinmap() operation, or if
the SA somehow detects an error that affects the connection. MSGmi

B.6 shows the operation sequence this operation.

Note: This operation is always called when a component unmapstifsgoor

a TSI port, even if the connection using the TSI had been properlylclose
this case théhandlerMap has no entry for the&siConnld parameter

value, thus this operation returns without calling tleeiConn-

Terminate() operation.

121

csiConnSend (SA -> CM System Component)

In:

Return:

Purpose:

When:

CsiConnldType csiDataConnld
Identifier of the data connection via which a message should be sent. This
value is the output parametsiataPortld of csiConnDecodeOp()

operation.

CsiDataMsgType csiDataMsg
This value contains sendMessage that should be delivered to the SUT. It
was received by the SA as the output parameter eai@nnParam of

csiConnDecodeOp()

TriAddressType sutAddress
The sutAddress value that was received as a parameter of the

triSend() operation.

CsiStatusType csiStatus

Status code of the operation call. This value is CSI_ERR, if the CM System
Component is unable to handle the operation request due to insufficient
resources, non-existing data connection, or due to any other reason that the
CM System Component can determine during the operation call. CSI_OK is

returned otherwise.

With this operation the CM System is instructed to send a mgedsathe
SUT. The CM System Component handles this by forwarding the reguest
the CM that is handling the connection by calliogiConnData()
operation (see A.2.2 Operations for more details on calling theQGids
Interface Operations). Identifier of the CMc{Cmlid) and its class can be
found from the system’shandlerMap data structure by using

csiDataConnld as the key.

TTCN-3 send statement executed using a data port that is mapped with a
TSI port is seen as this operation at the CM System Intef&8€ diagram

B.7 illustrates how the operation propagates through the interfaces.

122

csiConnCall (SA - CM System Component)

In:

Return:

Purpose:

When:

CsiConnldType csiDataConnld
SA generated identifier of the data connection, for which a procedure call
should be performed. This value is derived by the SA frontsiRertld

andcomponentld parameters of theiCall() operation.

CsiDataCallType csiDataCall
This value contains the signature of the procedure that should be called, and a
parameter list for it. This is derived by the SA freignatureld and

parameterList parameters dfiCall()

TriAddressType sutAddress
The sutAddress value that the SA received as a parameter of the

triCall() operation.

CsiStatusType csiStatus

Return value that is used in the same way asil@onnSend()

With this operation the CM System is instructed to performoaquture call
at the SUT. The system handles this operation similarly to

csiConnSend()

TTCN-3 call statement executed using a data port that is mapped with a
TSI port is seen as this operation at the CM System Intef48€ diagram

B.8 shows how the operation propagates through the interfaces.

csiConnReply (SA - CM System Component)

In:

CsiConnldType csiDataConnld
SA generated identifier of the data connection, for which a procedure return
should be performed. This value is derived by the SA frontsiRertld

andcomponentld parameters of theiReply() operation.

CsiDataReplyTypecsiDataReply

This value contains the signature of the procedure that should return,

123

Return:

Purpose:

When:

parameter list for it, and a return value of the procedure. This is geneyated b
the SA from thesignatureld , parameterList , andreturnValue

values that it received as parametersi&eply()

TriAddressType sutAddress
The sutAddress that was received as a parameter ofttifreply()

operation.

CsiStatusType csiStatus

Return value that is used in the same way asil@onnSend()

With this operation the CM System is instructed to perform aephoe-
return at the SUT. The system handles this operation similarly t

csiConnSend()

TTCN-3reply statement executed using a data port that is mapped with a
TSI port is seen as this operation at the CM System Interface. MSC diagram

B.8 shows how the operation propagates though the interfaces.

csiConnRaise (SA > CM System Component)

In:

CsiConnldType csiDataConnld

SA generated identifier of the data connection, for which a procedure
exception raise should be performed. This value is derived by the SA from the
tsiPortld andcomponentld parameters of theeiRaise()

operation.

CsiDataRaiseType csiDataRaise

This value contains the signature of the procedure that should raise an
exception, and a value for the exception, and it is generated by the SA from
signatureld , parameterList , andexception that it has received as

parameters dfiRaise()

124

TriAddressType sutAddress
The sutAddress value that was received as a parameter of the

triRaise() operation.

Return: CsiStatusType csiStatus

Status code that is used in the same way esi@onnSend()

Purpose: With this operation the CM System is instructed to raisexaepgion at the

SUT. The system handles this operation similarlgsi€onnSend()

When: TTCN-3raise statement executed using a data port that is mapped with a
TSI port is seen as this operation at the CM System Interface. MSC diagram

B.8 shows how the operation propagates though the interfaces.

A.2 CM Class Interface

The CM Class Interface contains the operations between th8ystidm Component and
the CM Classes. Implementation of the CM Class Interface atipes, in which CM
System Component is the caller, is class specific, but tegaoe is the same for every
class. When the classes are registered into the CM Sys$ter@M System Component
stores into its csiClassReg for each class a method (Table A-2:
CsiClasslfaceType), with which it can the interface functions of the class (the

operations of Table A-4 in which CM System Component is the palleese operations

Table A-4: Operations at CM Class Interface.

Category: Call Direction: Operation I dentifier:
Class CM System Comp=> CM Class | ccilnit

CM System Comp=> CM Class | cciFinalize

CM System Comp=> CM Class | cciReset
Connection CM System Comp=> CM Class | cciConnOpen

CM System Comp=> CM Class | cciConnControl
CM System Comp=> CM Class | cciConnClose

CM System Comp=> CM Class | cciConnData

CM System Comp=> CM Class | cciConnTerminate
CM Class> CM System Comp. | cciConnClosed
Encoding CM Class> CM System Comp. | cciEncodeCiCtrlOp

125

are used by the CM System Component to distribute the operation teegueseives
from the SA to the right CMs. The interface also provides amatiparwith which a CM
Class can notify the CM System Component about a situation, irhwhias closed a
connection without the CM System Component requesting for it. To thak&ansfer
syntax of the Connection Interface operations (5.2.3 On transfer sgntibencoding)
invisible to the classes, the CM System Component provides a proeetturghich the

classes can do the encoding of Cl operations. All the operations are procedure call

A.2.1 Data types

The abstract data types defined in Table A-5 are specifitet€M Class Interface. All
the other used data types are defined at the CM System Interface (T2ble A-

Table A-5: Data types at CM Class Interface.

Type | dentifier: Description:

CciCmldType Base-class type for class specific CM identifidiisis is used to hide
the differences of the CM identifiers used by difet CM Classes;

one class might address its CM instances with aongaddress

value, while another class uses integer or charatiag identifiers.

A.2.2 Operations

It was required in Section 4.3.4, that the connection category operatiothe CM
System Interface operations the CM System Component provides ®Atlae non-
blocking. This can be guaranteed by having an operation buffer in Mhe&System
Component, in which the operation requests are buffered. The CM Sgsterponent
can contain several worker threads that process the requestsisttine buffer one by
one when they have time. Alternatively, the every CM Clasgddoave a similar buffer
into the operation requests done by the CM System Component to theldShl ate
buffered.

In the case every CM Class implements their an own operatioferfufthe
cciConn*() operations become non-blocking to the CM System Component.
Therefore, the CM System Component should caltti@onn*() operations directly

from csiConn*() operation invocations, without using its own buffer, in order to avoid

126

double buffering. In the case the buffering is always done in lh&gGtem Component,
then it is allowed that theciConn*() operations are blocking to the CM System
Component. Regardless of the chosen buffering policyggi@@onn*() operations are

always non-blocking the SA.

The following procedure operations are specified at the CM Class Iterfac

ccilnit (CM System Component > CM Class)

Return: CsiStatusType status
Status code of the operation call. The return value is CSI_OK, if the class was

successfully initialized.

Purpose: This class specific operation is used to initialize the diasguestion. The
class may reserve memory dynamically, establish stammections with
SUT, or it may perform any other actions that has to be done bgfabe to

become usable.

When: The CM System Component calls this operation for every registelass

during thecsiClasslInit() operation.

cciFinalize (CM System Component -> CM Class)

Purpose: This operation is opposite to theeilnit() operation. All the resources
reserved by the class are freed. The class must forcdtrifyinate any

possibly open connections.

When: The CM System Component calls this operation for every ezgibtclass
during the csiFinalize() operation, or for a single class when the

csiClassFinalize() is called.

cciReset (CM System Component - CM Class)

Purpose: This operation is used to clear all the connection related dat® &saninate

any possibly existing connections.

127

When:

The CM System Component calls this operation for every regist€M

Class as the result of tksiReset() operation.

cciConnOpen (CM System Component > CM Class)

In:

Out:

Return:

CsiConnldType csiCtrIConnld
Identifier of the control connection that is used to control the data connection
identified by the input parametesiDataConnld . This is the same value

as the corresponding input parameter ofddi€onnOpen() operation.

CsiConnldType csiDataConnld
Identifier of the connection that should be opened. This is the same value as

the corresponding input parameter of ¢s&onnOpen() operation.

CsiClassDataType csiClassData
Class specific configuration data in encoded form. This the same value that is
stored in the input parametesiCtrIParams of thecsiConnOpen()

operation.

TriAddressType sutAddress

Value that can be used to specify the SUT end point of the connection, if it is
not encoded within thesiClassData parameter value. This the same

value that is stored in the input parametgiAddress of the

csiConnOpen() operation.

CciCmIdType cciCmid

Class generated value that identifies the CM that handles the opened
connection. This value remains valid until CM System Component calls either
cciClose() or cciTerminate() operation, or until the CM Class

notifies the CM System Component wibiClosed() operation that the
connection has been closed. No other opened connection may have the same

cciCmld value.

CsiStatusType status

Status code of the operation call. The return value is CSI_OK, if the class had

128

Purpose:

enough resources to attempt to open a new connection and there were no

errors with the in-parameters of the operation.

With this operation the CM Class is instructed to create a c@wection
manager to handle the data connection which is identified by
csiDataConnld , and which controlled by the control connection identified
by csiCtrIConnld . As the return value of this operation, the CM System
Component receives the identifier of the new manageiC(nid) that
handles the connection. This identifier is used in all the other CAdsCl

Interface connection operations to address the right CM.

If the value ofcsiDataConnld is equal tocsiNoConnld then this
operation is interpreted by the receiving CM Class as a sedqaeopen a
stand-alone control connection. What this means is class dependent. The
stand-alone control connections can be used for example for gtarich
controlling class provided server entities. An example of thigiven in
Section 5.4.7 TCP server example, in which a single component taieesfc
starting and stopping of a TCP server entity, and other component®ithen
with it to handle any connections that the SUT establishes ighsérver

entity.

Successful return from this operation does not indicate that the ciomisct
usable; it only indicates that the class understood the request laptaess
it. The CM System Component updates handlerMap to contain the
information, that the opened connection is handled by the CM, that is

identified by the value of the output paramet&Cmid .

Once the connection has been opened, the CM handling the connection
reports this to the test case component by perfornai@pened()
operation. If for some reason it cannot open the connection, it performs
ciClosed() operation, and it also notifies the CM System Component with
the cciConnClosed() operation to clear its data structures of any

connection related data.

129

When:

This operation is called as a rescdiConnOpen() operation, which is
called as a result afiOpen() operation of the Connection Interface. MSC

diagram B.1 shows how the operation propagates through the interfaces.

cciConnControl (CM System Component - CM Class)

In:

Return:

Purpose:

When:

CciCmIdType cciCmid

Identifier of the CM, that is handling the connection.

CsiClassDataType csiClassData
Class specific configuration data in encoded form. This is the same value that
is stored in the input parametmiCtrIParams of the

csiConnControl() operation.

TriAddressType sutAddress

Value that can be used to specify the SUT end point of the connection.

CsiStatusType status
Status code of the operation call. Used in the same way as in

cciConnOpen()

With this operation the CM System Component component passes class
specific control data to the CM identified bgiCmld . The control data may
instruct the CM to modify the data connection related options, aray
contain other class specific commands to the CM. What it does depends

completely on the CM Class.

This operation is called as a result afiConnControl() operation,
which is called as a result afControl() operation of the Connection
Interface. MSC diagram B.2 shows how the operation propagates thaugh

interfaces.

130

cciConnClose (CM System Component - CM Class)

In: CciCmIdType cciCmid

Identifier of the CM, that is handling the connection that should be closed.

CsiClassDataType csiClassData
Class specific configuration data in encoded form. This is the same value that
is stored in the input paramet=iCtrIParams of the

csiConnClose() operation.

TriAddressType sutAddress

Value that can be used to specify the SUT end point of the connection.

Return: CsiStatusType status
Status code of the operation call. Used in the same way as in

cciConnOpen()

Purpose: With this operation, the class is instructed to close the conndwinied by
the CM, which is identified byciCmld . As the result, the class starts
shutdown procedures for the connection. When they have finished and
connection with SUT has been closed, the manager handling the connecti
acknowledges this to the component of the connection by performing the
ciClosed() operation of Connection Interface. The shutdown procedures
may include transmission of all the data in send-buffer of the ctanec
manager, and waiting for any data that has not yet been recéwneds
expected, that should be delivered to the component. What is done depends on
class and its class specific parameterssiClassData . The cciCmld
value becomes invalid to the caller (CM System Component) when this

operation returns.

Once the connection manager has closed the connection with SUT, it repor

this to the test case component by performingiGéosed() operation.

131

When:

This operation is called as a rescgiConnClose() operation, which is
called as a result @iClose() operation of the Connection Interface. MSC

diagram B.4 shows how the operation propagates through the interfaces.

cciConnTerminate (CM System Component - CM Class)

In:

Purpose:

When:

CciCmIdType cciCmid
Identifier of the CM, that is handling the data connection which should be

terminated.

String reason

String containing the reason why the connection should be terminated.

This operation is used for the special case, in which a CM is needed instructed
to forcefully shut down the connection it is handling and to discard
immediately all the connection related data.

The CM may try to send e@Closed -—indication (see 5.2.4 Operations) to
the component whose connection it is handling. If the termination caase w
that the component unmapped its control port, then this attempt by the CM
will fail, because the CM cannot get anymore the needed paranrem® the

SA for atriEnqueueMsg() call by using theniLock() operation of the
Mapping Interface (see A.3 Mapping Interface), because the &4 dot

have the information anymore.

This operation is called as a rescgkiConnTerminate() operation,
which can be a result of unmapping of the component port, which wag bei
used for a data or a control connection. In normal situation this operstion
never called, since the connections should be properly closed from the tes
case with theciClose() operation before the unmapping is done. If a
connection has been closed successfully, then the CM System Carnpone
will not call this operation even dsiConnTerminate() is called. MSC

diagram B.6 shows how the operation propagates through the interfaces.

132

cciConnData (CM System Component - CM Class)

In:

Return:

Purpose:

When:

CciCmIdType cciCmid

Identifier of the CM that is handling the connection.

CsiOpldType operationld

Operation identifier.

CsiDataParamsType dataParams

Operation specific parameter.

TriAddressType sutAddress
Value that can be used to specify the SUT end point of the connection that

should be closed.

CsiStatusType status
Status code of the operation call. Used in the same way as in

cciConnOpen()

With this operation the CM System Component requests the CM igenbii

the cciCmld to the handle the CSI interface communication operation
identified byoperationld . The operation can be one of the following:
csiConnSend , csiConnCall , csiConnReply , or csiConnRaise
dataParams contains the parameters for the operation. If this operation
returns successfully, then the CM of the connection attempts toripetiie

requested operation.

This operation is called fromcsiConnSend , csiConnCall
csiConnReply , andcsiConnRaise operations. MSC diagrams B.7 and

B.8 show how the operation propagates through the interfaces.

cciConnClosed (CM Class -> CM System Component)

In:

CsiConnldType csiCtrlConnlid
Identifier of the control connection that is used to control the data connection

identified by the input parametesiDataConnld

133

CsiConnldType csiDataConnld

Identifier of the data connection that should be closed.

Purpose. With this operation a CM Class can indicate to the CM Systemp©nent,
that a previously opened connection has been closed. The CM System
Component can update itentrolMap andhandlerMap data structures
based on the input parameters. Figure 4-8 shows how the data stracilires

identifiers are related.

The CM System Component removes fromdtstrolMap the mapping

between thesiDataConnld andcsiCtrIConnld

If the value ofcsiDataConnld is other than the constacgiNoConnld
then the CM System Component uses the valuesddataConnld to

remove the entry frorhandlerMap .

If the value ofcsiDataConnld is equal to constamsiNoConnld , then
the CM System Component uses the valuesoEtrlConnld to remove

the entry fromhandlerMap .

When: This operation is called by the CM Class, or by one its CMwen the
connection with the SUT has been closed without the CM System Contpone
requesting for it. Possible reasons are SUT terminated coomedtailed
attempt to establish a connection with the SUT, or an erroramsrission
path. This operation ialways called before a CM Class or CM performs a
ciClosed() operation, which iswot a confirmation to theciClose()
operation, but is a negative acknowledgement tciBpen() operation or
an indication to the test case that a connection has been cldsedCM
System Component has to be notified about the closed connection before
notifying the test case component, to avoid the situation, in whichesite t
case component might be able to try to re-open the closed connedtiom be
the CM System Component has cleared the old entry. Both of the tonsec
would have the same identifier in this error situation in the Cldte®y
Component.

134

Situations after which this operation may not be called areotlmving: the
CM System Component callscciReset() , cciFinalize()

cciConnClose() , orcciConnTerminate()

MSC diagram B.5 shows how the operation propagates through the interfaces.

cciEncodeCiCtrlOp (CM Class > CM System Component)

In:

Out:

Purpose:

CsiCiOpldType csiCiOpld

Identifier of the CI operation, for which a message is wanted to be encoded.
The value can besiCiOpenedid , csiCiStatusld , or

csiCiClosedid

String csiClassld

Identifier of the class calling this operation. This is the same ideniifibr
which the class was registered into the CM System Component (with
operationcsiClassReg()), and which is used as the field name of this
class in theelass field of the CI control operation messages (Definitions

can be found in Section 5.2.2 Type definitions).

CsiConnldType csiDataConnld

Identifier of the data connection, for which the calling class wants to encode a
Connection Interface control category operation message (listed iarSe&
Connection Interface).

CsiClassDataType csiClassData
Class specific configuration data in encoded form. The calling CM Class has

done the encoding of the data.

TriMessageType receivedMessage
A value containing an encoded Cl interface control category operation

message in the form @mSysControlMessage (defined in Table 5-3).

With this operation the CM Classes can request the CM SyStamnponent

to encode a Connection Interface control message of Gipened ,

135

CiStatus , or CiClosed , into the form ofCmSysControlMessage
This makes the transfer syntax of the control messages invisiltkee CM
Classes, and each of the classes does not have to implement their own encoder

for the control messages, except for their class specific data part.

After calling this operation, the out-parameter vataeeivedMessage
can be sent by the caller to a test case component with the

triEnqueueMsg() operation.

NOTE: There exists no decode operation for the CM Classes, bettguse
decoding (excluding class specific part) of the incoming Cl comesdsages
is done by the CM System Component within ds€ConnDecodeOp()

operation.

When: This operation is called by a CM Class or a CM when it wantyeate an
encoded CI control message to be sent to a component (MSC diagrams B.1
B.3, B.4, B.5, B.6, and B.9).

A.3 Mapping Interface

Mapping Interface provides operations, with which the CM Classeshen@€Ms can
guery from the SA the current TSI mapping information of a cororebly a connection
identifier. The mapping information of a connection consist of TaPortld
tsiPortld , TriComponentldType componentld)—pair, which can be used as

the parameter of @Enqueue*() operation call.

The mapping information is stored into a single shared datawseucalledtsiMap in
the SA, instead of distributing copies of it to the CMs when newesiimns are being
created. The reason for this is that the port mappings maygethaiuring a test case,
causing a copy of agiPortld , componentld)—pair to become out of date. TRI
interface standard does not specify what is the result ofngaliEnqueue*()
operations with invalid parameters. The used TTCN-3 tool may choosmdre the
operation call without affecting the verdict of the test casdf oray seterror test

verdict, or do something else. To avoid this situation with unknown resufsequired,

136

that the TSI mapping information stored tsiMap is not readable by a CM or CM
Class, when it is being modified by the SA, and it cannot be modifigde SA, when a
CM or CM Class is about to calltaEnqueue*() operation with atéiPortld

Componentld)—pair.

The specified Mapping Interface operations provide the means withwhCM or CM
Class can signal to the SA, that it wants to reserusioftld , componentld)-

pair fromtsiMap into its use, or that it does not need the pair anymore. In adtbtion
this functionality, the implementations of the TRI interface ajpammatriMap() and
triuUnmap() have to be such that they take into account the reservations before
updating the information stored tsiMap . If a (tsiPortld , componentld)—pair

has been reserved, then the SA must wait for the pair to beconsemned until it may
modify the mapping information related to the pair and complete Rieoperation in

guestion.

The operations with which the SA handles the reservations and sheramapping
information into thetsiMap are internal to the SA and outside the scope of this

document.

A.3.1 Data types

This interface has no own data types.

A.3.2 Operations

miLock (CM = SA)

In: CsiConnldType csiConnid
Identifier of a connection, whostsiPortld , componentld)—pair is
wanted to be locked. The CM received this value when the connection was

opened.

Out: TriPortldType tsiPortld

tsiPortld corresponding to the input parametsiConnld

137

Return:

Purpose:

When:

TriComponentldType componentid

componentld corresponding to the input paramateiConnid

CsiStatusType status

Status code of the operation. The value is CSI_OK, if the pair corresponding
to thecsiConnld existed and was successfully reserved. CSI_ERR is
returned if there exists no entry for t@Connld that could have been

reserved.

With this operation a CM can retrieve and reserve frziviap the
tsiPortld andcomponentld values corresponding to tiesiConnid
The values remain reserved for the CM until it calls thi&nlock()

operation with the samesiConnlid

If the values corresponding ¢siConnld have already been reserved for an
other caller, this operations blocks until they have been releashdthvei

miUnlock() operation.

The implementations of the TRI interface operatiansiap() and
triunmap() operations has to be such that if a CM has reserved ancertai
(tsiPortld , componentld)—pair, and the TRI operation would have an
effect on this pair, then the TRI operation will block until the CM has released
the pair by calling themiUnlock() operation. Similarly, theniLock()
operation will block if thetriMap() or thetriUnmap() operation is
being called by the TE.

The CM calls this operation right before it is going to call a
triEnqueue*() operation. It also calls thmiUnlock() operation right

after thetriEnqueue *() operation has finished.

miUnlock (CM = SA)

In:

CsiConnldType csiConnid

Identifier of a connection, whostsiPortld , componentld)—pair is

138

Purpose:

When:

wanted to be unlocked. The CM received this value when the connection was

opened.

With this operation a CM can unlock thisiPortld , componentld)-—
pair identified by the input parametesiConnld . The CM must have
locked the pair previously with themiLock() operation to prevent any
modifications to the mapping information for the duration of a

triEnqueue *() operation call.

The CM calls this operation right after ttsEnqueue*() operation call
has returned, not to unnecessarily prevent the TE and the SA from dging a

possibly modifications to the mapping information.

139

B MSC DIAGRAMS

This section contains selected message sequence chart diaghéchsg)lustrate how the

interfaces and their operations specified in Chapter 5 and Appendix A work together.

B.1 Open

This MSC diagram shows how a data connection is opened fromesheadse by a
component and what interface operations this results in. If the opesdprecails, then
the CM closes the connection as in MSC B.5 Closed, by notiffyiegGM System

Component and the test case component.

msc Open
. . :CmSystem R .
:Component TE SA :CmClass SUT
Comp.
controlPort .send(ciOpen(tsiDataPort, openParams)) to sutAddress tsiPortid Contains the identifier of the TS port
~_,J that is mapped with controlPort
PR B
tri onentld, tsiPortld, sutAddress, sendMessage(CmS ysControlMessage corresponding to ciOpen;
I -
O| csiConnDecodeOp(ctriConnld, sendMessage(CmSysControlMessage))
I
O
SA derives CsiConnldType ctriConnid from CM System decodes the following information from sendMessage:
Tr!PurtIdType tsiPortld, and ciOperationld , tsiPortName , tsiPortindex , classld, and classData.
TriComponentldType componentid. I
_ ‘ _ ‘ ‘ T csiConnOpenld, dataConnld, csiCtrlParams(csiClassld , csiClassData)
csiConnOpenld is returned based on the decoded
ciOperationld value. This tells the SA which CSI-
operation to call, which is csiConnOpen() in this case. csiConnOpen(ctriConnld, dataConnld, csiCtrlParams(csiClassld, ¢ siClassData), sutAddress)
dataConnld was generated by the CM System Comp.
from tsiPortName, tsiPortindex, and the
componentldString field of ctriConnlid cciConnOpen(ctriConnld, dataConnld, csiClassData, sutAddress)
(1 th
Class and CM Specific operations to handle the requ esy
New CM is created or
assigned to handle the = :CM
connection.
dataConnld to cciCmid " ‘ ‘ ‘ . .
is stored into handlerMap . cciCmid Connection establishment|
Can be an activated alt-statement [\ ctriConnld to dataConnld
default alternative, which handles mapping is stored into controlMap.
the acknowledgements to ciOpen ‘
messages. Connection is ready
. . miLock(ctriConnld)
controlPort .receive(ciOpened) -t I
L -4 ‘ tsiCtrlPortld , componentld
|
cciEncodeCiCtrlOp(csiCiOpenedid , ownClassld, csiDataConnld,
The CM asks the CM System csiClassData(openedParams)) o
Component to build a Connection et { {
Interface operation message in the ‘#O‘ ‘ ‘
transfer syntax form. J " - !
4 cmSysControlMessage corresponding to ciOpened

triEnqueueMsg(tsiCtriPortld , sutAddress , componentld , receivedMessage (CmSysControlMessage))
- |
miUnlock(ctriConnlid ‘)
Open acknowledgement has
been received
— o csiDataConnld contains the identifier of the TSI port of the
I ciOpened(tsiDataPort, openedParams) connection (tsiDataPort

140

B.2 Control

This MSC diagram illustrates how a connection can be controlled, when it has been

successfully opened as shown in MSC B.1 Open.

msc Control
. i . :CmSystem .
:Component TE :SA :CmClass :CM :SUT
Comp. — —
controlPort .send(ciControl(tsiDataPort, controlParams)) to sutAddress tsiPortld contains the identifier of the TSI port,
——» ‘ A — that is mapped with controlPort
o I I
I — triSend(componentld, tsiPortld, sutAddress, sendMessage(CmS ysControlMessage corresponding to ciControl))
> | | I
‘ 1P| csiConnDecodeOp(ctriConnld, sendMessage(CmSysControlMessage))
SA derives CsiConnldType ctriConnld from CM System decodes the following information from sendMessage:
TriPortldType tsiPortld, and ciOperationld , tsiPortName , tsiPortindex , classld, and classData.
TriComponentldType componentld. I I
I [T - . .
csiConnControlid is returned because of the decoded™"" | csiConnControlld, dataConnld, csiCtrlParams(csiClas sld, csiClassData)
ciOperationld value. The SA knows to call
csiConnControl() because of the
csiConnControlld value. csiConnControl(ctriConnld , dataConnld, csiCtrlParams(csiClassld, csiClassData) , sutAddress)

dataConnld is generated by the CM System Component
from tsiPortName, tsiPortindex, and the
componentldString field of ctriConnld

cciConnControl(cciCmld, csiClassData, sutAddress)

(Control)

cciCmid corresponding to dataConnld can be found from N

Class and CM specific operations to handle the requ esy
handlerMap, unless dataConnld s equal to constant
csiNoConnld. If dataConnld is equal to csiNoConnld,

ﬁ-‘ Control
il
meaning that no data port had been specified, the cciCmld

value is found from the handlerMap by using ctriConnid
Opt J as the key.
I

Status

N

s S 1 e

141

B.3 Status

This MSC diagram illustrates how a connection manager can setatus message
regarding a connection it is handling to the test case compohattopened the

connection.

msc Status
:Component TE SA LmSystem :CmClass :CM SUT
Comp.

A connection has been opened as described in MSC Open.
The CM knows the dataConnld of the connection, and the ctriConnld of the related control connection.

Can be an activated alt-statement default alternative, which ctriConnlid was passed to the class of the CM N
handles the ciStatus messages. when the connection was opened. If the CM does not CM decides to send a
know it, it can ask it from its class. status report concerning a
T connection it is handling.
‘ miLock(ctriConnid)
controlPort .receive(ciStatus) - ! |
- ‘ ‘ tsiCtrlPortld , componentld
|
‘ cciEncodeCiCtrlOp(csiCiStatusld , csiClassld, csiDataConnld,
The CM asks the CM System to csiClassData(statusParams)
!
build a Connection Interface - {
operation message in the transfer T
syntax form. cmSysControlMessage corresponding to ciStatus
triEnqueueMsg(tsiCtrlPortld , sutAddress P itld |, received| (cmSysControl))
miUnlock(ctriConnid)
Status report has been received ‘ ‘4
e 1] \ [
iStatus(tsiDataPort, statusP: " . . i
ciStatus(tsibataPort, statusParams) csiDataConnld contains the identifier of the TSI port of the
connection (tsiDataPort)

142

B.4 Close

This MSC diagram illustrates how connection is closed when thieqisested by a test
case component.

msc Close
X X X :CmSystem))
:Component TE :SA :CmClass :CM
Comp.
controlPort .send(ciClose(tsiDataPort, closeParams)) to sutAddress ‘
tsiPortld contains the identifier of the TSI port,
_____ that is mapped with controlPort
B — I I
triSend(componentld, tsiPortld, sutAddress, sendMessage(CmS ysControlMessage corresponding to ciClose))
> | [‘
[.
0| csiConnDecodeOp(ctriConnld, sendMessage(CmSysControlMessage;
SA derives CsiConnldType ctrlConnid from _ P L ge(| 4 ge) |)
TriPortldType tsiPortld, and P - ,
TriComponentidType componentid. CM Syslgm decodes_the following |n19rmat|on from sendMessage:
‘ ‘ ‘ ciOperationld , tsiPortName | tsiPortindex , classld, and classData.
csiConnCloseld is returned based on the decoded o N T . ,‘ . I
ciOperationld value. The SA knows to call csiConnCloseld, dataConnld, csiCtrIParams(csiClass| d, csiClassData)
" i | | |
csiConnClose() by esiConnCloseld . csiConnClose(ctriConnld , dataConnld, csiCtrlParams(csiClassld, csiClassData) , sutAddress)
dataConnld is generated by the CM System from
tsiPortName, tsiPortindex, and the
componentldString field of CtrlCur‘ml‘d cciConnClose(cciCmld, csiCloseParam, sutAddress)
-l Il
‘ ///T - ‘ This may include receipt of data from the SUT, and sending
- - of buffered messages to the SUT. What is done depends on
cciCmlid corresponding to dataConnld can be found from the instructions contained within the class specific data.
handlerMap . — I

Class and CM specific operations to handle the requ est
dataConnid to cciCmid mapping is removed from P P q)
handlerMap . Also, if this was the last data connection the [P Close connection ‘
)
Il

component had, then the related control connection entry is
removed from controlMap

Can be an activated alt-statement default ﬁ

Closing procedures

\

Closing procedures have finished

alternative, which handles ciClosed

miLock(ctriConnld
f— | -« |
controlPort .receive(ciClosed) ‘ ‘ tsiCtrlPortld , componentld
& > |
‘ cciEncodeCiCtrlOp(csiCiClosedId , csiClassld, csiDataConnld,
The CM asks the CM System to csiClassData(closedParams) o
build a Connection Interface Bl } | !
operation message in the transfer *‘*O‘ ‘ ‘
tax form. | - ——
syntaxtorm cmSysControlMessage corresponding to ciOpened
I | |
triEnqueueMsg(tsiCtriPortld , SutAddress , componentld , receivedMessage (CmSysControlMessage))
|
miUnlock(ctriConnid)
Closed indication has been -
received

I) x

ciClosed(tsiDataPort,closedParams), sutAddress

‘ TSI port of the connection (tsiDataPort).

S .

‘ csiDataConnld contains the identifier of lhﬁ

143

B.5 Closed

This MSC diagram illustrates how a connection is closed whemstimgiated by a CM
Class or a CM, as result of failure to open a new connection en wn existing
connection is lost. The CM notifies first the CM System Component about the &ftent,

which it notifies the test case component.

msc Closed
:Component TE SA LLmSystem :CmClass :CM SUT
Comp.

Connection manager detects
that either it cannot open a new
connection as requested by the
Component, or that an existing
connection with the SUT has been lost
without Component requesting for it.

cciConnClosed(csiCtrIConnld, csiDataConnld)

The CM System Component clears its
controlMap and handlerMap data
structures from the entries correspondingto f——-
the input parameters.

Mapping data structures
updated

Can be an activated alt-statement default ﬁ ‘ ‘

alternative, which handles ciClosed
messages.

‘ miLock(ctriConnld

|
controIFiort .receive(ciClosed) -t i 1
-l H‘ tsiCtrlPortld ,compone‘mld
‘ cciEncodeCiCtrlOp(csiCiClosedld , csiClassld, csiDataConnld,
csiClassData(closedParams)
The CM asks the CM System to build a - | !
Connection Interface control-operation ——%# ‘ ‘ ‘
message in the transfer syntax form. t t
cmSysControlMessage corresponding to ciClosed

triEnqueueMsg(tsiCtriPortld , SutAddress , componentld ,
receivedMessage(CmSysControlMessage corresponding t ociClosed)
-

miUnlock(ctriConnld)

T
ciClosed(tsiDataPortld), sutAddress ‘ csiDataConnid contains the identifier of the
‘ TSI port of the connection (tsiDataPort).

144

B.6 Terminate

This MSC diagram illustrates how a connection is terminatedhiey SA, when a

component unmaps its port, for which it opened a connection, but not exlioghd by

sending aiClose
are no open connections, ar@Terminate()

message as in MSC BdsiTerminate()

is not called.

has no effect if there

msc Terminate

:Component TE SA CmSystem :CmClass CcM :SUT
Comp.
[[[

Component has a control port connection identified with ctriConnlid

, and dataConnld

, and a data connection identified with dataConnlid
is associated with port dataPort

ctriConnld is associated with port controlPort
T
unmap(controlPort) or
unmap(dataPort)
cciCmid corresponding to Connld
can be found from handlerMap.
triunmap(compPortld |, tsiPortld) e
L csiTerminate(connld, reason="unmap”)
cciTerminate(cciCmld, reason="unmap”)

Alt

(the unmapped port was dat aPor ly

handlerMap and controlMap
are cleared from the entries
corresponding to the connection

hai

Can be an activated alt-statement default alternative, which
ndles the acknowledgements to ciClosed

messages.

3

Class and CM specific operations to handle the requ esy

Terminate

(Terminate)

Closing procedures have finished

miLock(ctriConnid)
[

controlPort .receive(ciClosed)
|

H=

siCtrlPortld

f
, componentld
1

The CM asks the CM System to build a
Connection Interface control-operation
message in the transfer syntax form.

triEnqueueMsg(tsiCtriPortid
receivedMessage(CmSysControlMessag
-

, sutAddress

cciEncodeCiCtrlOp(csiCiClosedId
csiClassData(closedParams)

, csiClassld, csiDataConnld,

!
‘ cmSysControlMessage

I
, componentld

e corresponding t ociClosed)

|
- - | |
corresponding to ciClosed I

miUnlock(ctriConnid)

[T

T
ciClosed(tsiDataPortld), sutAddress

‘ csiDataConnld
‘ TSI port of the connection (tsiDataPort).

contains the identifier of

the %

[control Port]

Identifiers of the data connections related to the

Loop ("every data connection related to the control

connection is terminated”))

unmapped control connection can be found from
controlMap by using ctriConnlid as the key.

I I
handlerMap and controlMap are cleared fro
the entries corresponding to the connection T

P
P

T
cciTerminate(cciCmld, reason="unmap”)

Class and CM specific operations to handle the requ est like above)

No termination indications can be sent to the componem,&
because it is not reachable via the unmapped control port ‘

X

145

B.7 Message

This MSC diagram illustrates how a message is sent by parant via a data port, for

which it has previously opened a connection.

msc Message

:Component TE SA LmSystem :CmClass CM :SUT
COI’T\[.

tsiPortld contains the identifier of the 5

dataPort .send(msg) to sutAddress
TSI port, that is mapped with dataPort

triSer entld, tsiPortld, sutAddress,)

| cleonnDecodeOp(tslPorlCunnId sendMsssage(msg)
The SA derives CsiConnldType T
tsiPortConnld from TriPortidType R dataConnld ~ contains the same value as
tsiPortld, and TriComponentldType the received tsiPortConnld.
componentld. opee e O T

o N

csComSendild TS relmed becanse esicor dataConnid, csiD ‘
csiConnDecodeOp() recognizes the port identifier stored ‘

in CsiConnldType tsiPortConnld as one of the data csiConnSer onnid, csiD msg)), sutAddres s)
ports. The SA knowns to call csiConnSend() because of ob—— O]
csiConnSendld value

[T——————_____|cciCmId corresponding to
dataConnld can be found
from handlerMap .

[<

csiConnSend() is called because of th
return value csiConnOpenld.

P

cciConnData(cciCmld, csiConnSendid,
csiDataMsg(sendMessage(msg)), sutAddress)

Depending on the implementation, it is possible, that the cciConnData() operation is called
from within csiConnSend() ~ operation.

Deliver msg

Depending on the implementation, the cciConnData() operation may enqueue the to-be- T
sent message directly into a transmission buffer of the CM, without first passing it to the class,
which would forward it to its CM

Itis only required that the csiConnSend() is not a blocking operation to the SA.

B.8 Procedure

This MSC diagram illustrates how a component performs a proeedlrvia a data port,

for which it has previously opened a connection.

msc Procedure

:Component TE :SA CmSystem .CmClass cM :SUT
Comp.
dataPort .call(signatureld, parameterList) to sutAddress ‘ ‘

port, that is mapped with dataPort

tsiPortld contains the identifier of the TSI 5

T T
triCall(componentld, tsiPortld, sutAddress, signatureld, pa rameterList)
- L |
esiConnCall(dataConnid , csiDataCall(signatureld, parameterList), sutAddress)
T =——=—— cciCmld correspondlng to dataConnld
= can be found from handlerMap .
1 cciConnData(cciCmld, csiConnCallld, csiDataCall, sutAddress)
P

SA derives CsiConnldType dataConnld frol
TriPortldType tsiPortld, and Tr\ComponemldType
componentld

csiConncCall() operation is called directly without calling

csiConnDecodeOp(), because the TRI-operation is triCall

which is not used for passing control to the CM System. Class and CM specific operations to handle the requ esy
Depending on the implementation, it is possible, that the cciConnData() _ operation S el Make procedure call

is called from within csiConnCall() operation. Procedure call

Depending on the implementation, the cciConnData() operation may enqueue the
to-be-performed procedure operation directly into a transmission buffer of the CM,
without first passing it to the class, which would forward it to its CM.

Itis only required that the csiConnCall(__) is not a blocking operation to the SA.

‘ This same scenario is used for the reply() ~ and raise() port statements. The used corresponding CS operations are csiConnReply() and csiConnRaise().

N e O S

L

146

B.9 Receipt of a message or procedure operation

This MSC diagram illustrates how both message- and procedurg-basenunication
events concerning a data connection are enqueued by the CM ésttbage component

that opened the data connection.

msc Receipt

:Component TE SA LmSystem :CmClass :CM :SUT
Comp.

Alt (message based communication))

dataConnld

was passed to the class of the CM when the connection was

opened. If the CM does not know it, it can ask it from its class.

.

dMsg)

T
dataPort .receive(exp
Il Il

‘ -

miLock(dataConnld) ‘
T

T
tsiDataPortld

, componentld

, SutAddress

, componentld

, receivedMessage

(msg))

—
Lk

triEnqueueMsg(tsiDataPortld
-

|
|
miUnlock(dataConnld)

msg, sutAddress

[procedure based communication

Procedure return and exception raise are handled similarly with getreply(),
operations. a

triEnqueueReply() , and with catch() , triEnqueueException() o Procedure call

— -
,,//T ‘ miLock(dataConnld) ‘ H
e -
o - T f . .
o " SUT is blocked unti
- tsiDataPortld , componentld
o ‘ ‘ I P corresponding
dataPort .reply()

|

T T
dataPort .getcall(expectedSignatureld, expectedParameterLi: 3
L | | statement is executed

in the test case

triEnqueueCall(tsiDataPortld, sutAddress, componentld, signatureld , parameterList)
!

T
miUnlock(dataConnld)

T
signatureld, parameterList,
sutAddress

147

