
TAMPERE UNIVERSITY OF TECHNOLOGY

Department of Information Technology

ANTTI HYRKKÄNEN

General Purpose SUT Adapter for TTCN-3

MASTER OF SCIENCE THESIS

Subject approved by the Department Council on

09.06.2004

Examiners: Prof. Jarmo Harju (TUT)

Sr. Researcher Mika Katara (TUT)

I

PREFACE

This Master of Science Thesis was done for Plenware Group and Nokia Networks during

the period Fall 2003 – Spring 2005. I would like to thank my supervisors and examiners

Jarmo Harju and Mika Katara for showing interest on this thesis work and for pointing

out errors in the text. Without the support of the following persons on TTCN-3 and tool

related matters this thesis work would not have been possible: Federico Engler, Stephan

Schulz, Stephan Tobies, Thomas Deiss, and Vesa-Matti Puro.

I would also like to thank Plenware Group and Nokia Networks for financing this work,

and the following companies for providing evaluation versions of their TTCN-3 tools:

OpenTTCN Oy, Telelogic Finland Oy, Testing Technologies IST GmbH, and Danet

Group.

I am very grateful to Tiina for showing extreme patience—most of the time.

Tampere, June 8th, 2005

Antti Hyrkkänen

Luhtaankatu 15 C 17

33560 Tampere

Finland

II

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY

Department of Information Technology

Institute of Communications Engineering

HYRKKÄNEN, ANTTI: General Purpose SUT Adapter for TTCN-3

Master of Science Thesis, 102 pages, 45 enclosure pages.

Examiners: Prof. Jarmo Harju, Sr. Researcher Mika Katara

Financier: Plenware Group Oy, Nokia Networks

June 2005

Keywords: TTCN-3, Testing, System Under Test (SUT), Adaptation, SUT Adapter,
Connection Management

TTCN-3 Core Language is a programming language designed for specifying Abstract
Test Suites (ATS), which are collections of abstract test cases. These can be used for
various kinds of testing (e.g. module, integration, conformance) of the test target, System
Under Test (SUT). The communication between the test cases and the SUT is handled by
an entity called SUT Adapter. The testing can be message-based and procedure-based,
thus the SUT Adapter has to realize both kinds of communication with the SUT.

Because TTCN-3 Core Language is a rather new language (launched in 2000 by ETSI),
the present amount of literature on it is very limited. The available literature consists of
the TTCN-3 standard, and of overview articles and papers written by the people involved
in the development of the language and TTCN-3 tools. The language itself is not very
difficult to learn by examples to be able to write simple test cases. To be able to write an
own SUT Adapter, one needs to have a deeper understanding what is possible to do with
the language, how to use it and when, and how the execution of test cases is seen by the
SUT Adapter. In practise, this means that one has to study well the different parts of the
TTCN-3 standard.

One purpose of this thesis work is to give the reader an overview of the TTCN-3 Core
Language, and what entities and standardized interfaces exist in a TTCN-3 test system.
The presentation of these topics is based on different parts of the TTCN-3 standard,
putting emphasis on the topics involved in SUT Adapter design. The presented
information is then used as the basis for a new concept called Connection Manager
System, which is specified in this thesis work. It is an adapter framework, which can be
used to design such an adapter for TTCN-3 that provides several different kinds of
message- and procedure-based communication means with the SUT. The different
communication means can be controlled from the test cases in a uniform way, and new
means can be later added without breaking the existing system. The specification of the
Connection Manager System should give ideas to the reader what different things need to
be considered in SUT Adapter design.

III

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO

Tietotekniikan osasto

Tietoliikennetekniikka

HYRKKÄNEN, ANTTI: General Purpose SUT Adapter for TTCN-3

Diplomityö, 102 s., 45 liites.

Tarkastajat: prof. Jarmo Harju, vanh. tutkija Mika Katara

Rahoittaja: Plenware Group Oy, Nokia Networks

Kesäkuu 2005

Avainsanat: TTCN-3, Testaus, Testikohdejärjestelmä, Adaptaatio, Testikohdeadapteri,
Yhteydenhallinta

TTCN-3 Core Language on ohjelmointikieli, joka on suunniteltu määrittelemään
abstrakteja testisarjoja, jotka puolestaan koostuvat abstrakteista testitapauksista. Näiden
avulla testikohdejärjestelmälle (System Under Test, SUT) voidaan tehdä esimerkiksi
moduli-, integrointi- tai vastaavuustestausta. Testikohdejärjestelmän ja testitapausten
välisen kommunikoinnin mahdollistaa ohjelma nimeltä testikohdeadapteri (SUT
Adapter). Sen tulee pystyä toteuttamaan sekä sanomapohjaista että proseduuripohjaista
viestintää testikohteen kanssa, koska kommunikointi voi perustua molempiin näistä.

Koska TTCN-3 Core Language on melko uusi ohjelmointikieli (ETSI:n vuonna 2000
julkaisema), siitä on hyvin vähän kirjallisuutta saatavilla. Olemassa oleva kirjallisuus
koostuu lähinnä TTCN-3-standardista ja kielen sekä siihen liittyvien työkalujen
kehittämiseen osallistuneiden ihmisten kirjoittamista artikkeleista ja käyttöohjeista.
Yksinkertaisia testitapauksia on kuitenkin mahdollista oppia kirjoittamaan esimerkkien
avulla, koska kieli itsessään ei ole kovin vaikea. Testikohdeadapterin suunnittelu ja
toteutus sen sijaan vaatii kielen ominaisuuksien syvällisempää tuntemusta: miten kieltä
kannattaa käyttää eri tilanteissa ja miten testikohdeadapteri näkee testitapausten
suorituksen.

Tämän diplomityön yhtenä tarkoituksena on antaa lukijalle yleiskuva TTCN-3-kielestä
sekä TTCN-3-testijärjestelmään liittyvistä komponenteista ja niiden välisistä
rajapinnoista. Näiden asioiden esitys perustuu TTCN-3-standardin eri osiin ja se keskittyy
testikohdeadapterin kannalta oleellisiin tekijöihin. Tämän taustatiedon pohjalta työssä
esitetään uusi käsite yhteydenhallintajärjestelmä (Connection Manager System).
Yhteydenhallintajärjestelmän tarkoituksena on tarjota runko testikohdeadapterille, joka
tarjoaa useita erilaisia sanoma- ja proseduuripohjaisia kommunikointikeinoja
käytettäväksi testikohdejärjestelmän kanssa. Näitä erilaisia kommunikointikeinoja
hallitaan testitapauksista yhtenäisellä tavalla ja niitä voidaan lisätä myöhemmin adapteriin
muuttamatta jo olemassa olevaa toteutusta. Diplomityössä kuvatun yhteydenhallinta-
järjestelmän määrittelyn perusteella lukijalle tulisi muodostua kuva siitä, mitä asioita tulee
ottaa huomioon testikohdeadapterin suunnittelussa.

IV

TABLE OF CONTENTS

PREFACE.. I
ABSTRACT... II
TIIVISTELMÄ... III
TABLE OF CONTENTS...IV
ABBREVIATIONS..VI
DEFINITIONS OF TERMS ...VII

1 INTRODUCTION ... 1

2 TTCN-3 CORE LANGUAGE.. 3

2.1 TTCN-3 as a Programming Language ..3

2.2 Module..4

2.3 A Test Case and Testcase..5

2.4 Components, Ports, and Test Configurations..6

2.5 Verdict ..9

2.6 Testcases, Functions, and Altsteps...10

2.7 Types and Values ...11

2.8 Templates...13

2.9 Communication Operations...15

2.10 Alternative Behaviour ..17

2.11 Timers...20

2.12 Encoding and Decoding ..20

3 TTCN-3 RUNTIME INTERFACE ... 23

3.1 Structure of TTCN-3 Test System ...23

3.2 Overview of TTCN-3 Runtime Interface ..26

3.3 Connection Handling...28

3.4 Message-based Communication...29

3.5 Procedure-based Communication...30

4 GENERAL PURPOSE SA ... 33

4.1 Motivation and Background...33

4.2 Connection Manager System Concept..35

4.3 Requirements ...40
4.3.1 Connections... 41
4.3.2 Identifiers ... 44
4.3.3 Information storage.. 46
4.3.4 Concurrency .. 50
4.3.5 Operation handling order... 51

V

5 INTERFACES.. 56

5.1 Notation ..56

5.2 Connection Interface...57
5.2.1 On design choices ... 57
5.2.2 Type definitions ... 60
5.2.3 On transfer syntax and encoding .. 68
5.2.4 Operations ... 73

5.3 Error Handling...78

5.4 Connection Interface Usage Examples ...81
5.4.1 Operation messages ... 82
5.4.2 TCP connection – open request.. 83
5.4.3 TCP connection – opened confirmation .. 85
5.4.4 TCP connection – data .. 88
5.4.5 TCP connection – close request ... 89
5.4.6 TCP connection – closed confirmation and indication 90
5.4.7 TCP server example.. 91

5.5 Overview of CM System Interface...95

5.6 Overview of CM Class Interface..97

5.7 Overview of Mapping Interface..97

6 CONCLUSIONS .. 99

REFERENCES ... 102

APPENDICES... 103

A INTERFACES IN DETAIL.. 103

A.1 CM System Interface ..103
A.1.1 Data types... 104
A.1.2 Operations .. 107

A.2 CM Class Interface ...125
A.2.1 Data types... 126
A.2.2 Operations .. 126

A.3 Mapping Interface ...136
A.3.1 Data types... 137
A.3.2 Operations .. 137

B MSC DIAGRAMS... 140

B.1 Open...140

B.2 Control ..141

B.3 Status ...142

B.4 Close ..143

B.5 Closed ..144

B.6 Terminate..145

B.7 Message ...146

B.8 Procedure ...146

B.9 Receipt of a message or procedure operation...147

VI

ABBREVIATIONS

CCI CM Class Interface. The interface between the CM System Component and
the CM Classes.

CD Coding/Decoding

CI Connection Interface. The TTCN-3 language level user interface to the CM
System.

CM Connection Manager

CSI CM System Interface. The interface provided by the CM System
Component to the SA.

ETS Executable Test Suite (defined in ISO/IEC 9646-1)

IDL (CORBA) Interface Definition Language

IUT Implementation Under Test

MI Mapping Interface. The interface between the SA and the CMs.

MSC Message Sequence Chart

MTC Main Test Component

PA Platform Adapter

PDU Protocol Data Unit

PTC Parallel Test Component

SA SUT Adapter

SAP Service Access Point

SUT System Under Test

T3RTS TTCN-3 Runtime System

TCI TTCN-3 Control Interface

TL Test Logging

TM Test Management

TMC Test Management and Control

TRI TTCN-3 Runtime Interface

TSI Test System Interface

TTCN-2 Tree and Tabular Combined Notation, 2nd Edition

TTCN-3 Testing and Test Control Notation, version 3

VII

DEFINITIONS OF TERMS

CM Class Entity that provides communication means of certain kind with the SUT.
Each established connection using a class is handled by a CM belonging to
the class.

CM System A general term meaning the CM System Component, the CM Classes, and
the CMs, along with their data structures.

CM System Component Entity that provides the CM System Interface to the SA. It uses the services
provided by the CM Classes that are registered into it.

cmClassReg Data structure within the CM System Component, which contains interfaces
to all the CM Classes that are present in the CM System.

Codec Piece of software that encodes values of abstract TTCN-3 types into transfer
syntax form and back.

Connection Manager (CM) Entity that maintains an opened data connection, and which can be
controlled via a control connection.

Control connection A connection that is used to control one or more data connection of a
component.

Control port A port that is used for configuring connections for data ports.

controlMap Data structure within the CM System Component, which is used by it to find
which data connections are controlled by which control connections.

Data connection A connection that a component has opened with Connection Interface Open
operation.

Data port A port via which a test case component can communicate with the SUT.

(En)coding attributes Both the encode and variant attributes, that can be defined for a
TTCN-3 language element with the with statement. These are used to
select which codecs are used and to guide the codecs in encoding of abstract
TTCN-3 values into transfer syntax form.

handlerMap Data structure within the CM System Component, which is used by it to find
which CM Class and which particular CM is handling a certain connection.

Stand-alone control
connection

A connection that is not used to control any data connection, but which is
used as a signaling link with a CM.

tsiMap Data structure within the SA, which is used for storing component and port
identifiers of connections. Defined in Section 4.3.3.

TTCN-3 tool A program that either compiles or interprets modules written in TTCN-3
Code Language to make them executable.

 1

1 INTRODUCTION
TTCN-3 is a language designed for specifying Abstract Test Suites (ATS), with which the

test target, System Under Test (SUT), is tested. As of writing this document, there is very

little literature on TTCN-3 as a test programming language, and even less, if anything at

all, on SUT Adapter (System Under Test Adapter, SA) implementation. The reason for

this is that TTCN-3 is a new language that was published by European

Telecommunications Standards Institute (ETSI) in 2000 and its standard is still evolving.

A SUT Adapter is piece of software that handles the actual communication between the

SUT and the program that runs test cases and decides their results. When one wants to

build an own adapter from the scratch, the material one can resort to is the TTCN-3

standard, and what happens to come with the used TTCN-3 tool. A TTCN-3 tool is a

program that is required to interpret or compile the written test suites (ATS) to make them

executable. There are no examples in the standard on how one could realize an adapter,

and what things should be considered. The standard does provide an interface via which

the adapter communicates with the rest of test system, but how one utilizes the interface

operations and their parameters is left to the adapter designer. What comes to the

documentation and example adapters that currently come with the TTCN-3 tools, these

seem to be very minimal as of writing this document. The documentation might only state

that "The TRI interface is specified in [T3TRI]. If you need an adapter using TRI

interface for a special purpose, please contact our sales department.", which is not very

helpful. The example adapter, if such is provided, can be a simple adapter that opens a

TCP or UDP connection with a fixed end-point, without much configuration possibilities.

It can also be, that this adapter can be used with the message-based operations TTCN-3

language provides, but the procedure-based testing functionality of TTCN-3 cannot be

utilised. In addition, this kind of adapter may lack any kind of error handling and it may

not be suitable for situations in which test case configuration can change during an on

going test case.

The purpose of this thesis work is to give the reader a short overview on TTCN-3

language and test system, and how one can build such an adapter that can be used for

establishing communication channels between test targets of different kinds. The

 2

presented adapter system alone cannot be used for communication with the test targets,

but it provides a framework into which real adapter implementations can be added, and

which can be controlled in a uniform way. This adapter framework or system is called as

Connection Manager System in this document. The text should give ideas to the reader

what things should and could be considered in adapter design, even if the presented

framework is not used.

The content of this document is divided into theory and background part (Chapters 2 and

3), which gives to the reader an overview of the TTCN-3 based on its standards, and to

practical part (Chapters 4, 5, and Appendix A), which specifies a Connection Manager

System that is compatible with the TTCN-3 standards.

Chapter 2, “TTCN-3 Core Language”, gives an overview of TTCN-3 Core Language,

which is used for specifying test cases. It contains TTCN-3 code fragments to show what

the language looks like, and it contains references to the sections of the standards where

the presented features of the language are specified in more detail. Chapter 3, “TTCN-3

Runtime Interface”, describes what different elements and standardized interfaces are

present in a TTCN-3 test system, and how they are related to the test cases written in the

core language. After this, the interface between executable test cases and the adapter that

communicates with the test target is explained in more detail.

The concept of the Connection Manager System is explained in Chapter 4, “General

Purpose SA”, which describes the entities present in the system and interfaces between

them. The chapter also specifies requirements to the system: how connections and entities

are identified within the system, what information is stored and where, and how

operations are handled concurrently. The interfaces between the entities are specified in

Chapter 5, “Interfaces” and in Appendix A. This is done at an abstract level, meaning that

the information that is passed between the elements, and the operations for doing this, are

specified in a language independent manner. Message Sequence Charts showing the use

of the interfaces can be found in Appendix B. Chapter 6 contains a summary and

conclusions of the presented ideas.

 3

2 TTCN-3 CORE LANGUAGE
The TTCN-3 standard is divided into six parts, which each cover a different part of the

language: Part 1: TTCN-3 Core Language [T3CORE], Part 2: TTCN-3 Tabular

Presentation Format (TFT) [T3TFT], Part 3: TTCN-3 Graphical Presentation Format

(GFT) [T3GFT], Part 4: TTCN-3 Operational Semantics [T3OS], Part 5: TTCN-3

Runtime Interface (TRI) [T3TRI], and Part 6: TTCN-3 Control Interface (TCI) [T3TCI].

Of these, the Part 1: TTCN-3 Core Language is the most essential. It specifies the textual

syntax of the TTCN-3 language and how one writes test cases with it. It also serves as the

syntactical and semantic basis for other non-textual representation formats of the

language, such as the tabular format and graphical format, which are specified in Part 2

and Part 3 of the standard. In Part 4: TTCN-3 Operational Semantics, the semantics of the

core language is specified in detail by using a flow graph notation. It shows how the

statements in a TTCN-3 module (a compilation unit in TTCN-3, such as a .c file in C) are

to be interpreted when the test cases are executed.

This chapter provides an overview of the TTCN-3 core language based on ETSI standard

ETSI ES 201 873-1 V2.2.1 (2003-02) "Methods for Testing and Specification (MTS);

The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language"

(referenced as T3CORE in the text). Topics of the language relevant to this thesis work

are shown in greater detail, while less relevant are only mentioned or completely omitted,

irrespective of their importance in the TTCN-3 core language. The text contains

references to the sections of [T3CORE] where more detailed information on the presented

topics can be found. Where relevant, the text uses the courier font to highlight the

reserved words of the language.

2.1 TTCN-3 as a Programming Language

TTCN-3 Core Language can be seen as a programming language, which is meant for

specifying collections of test cases, Abstract Test Suites (ATS). To be able to execute the

test cases within an ATS, a tool (compiler, interpreter) is required to transform the ATS

into an Executable Test Suite (ETS). The language is independent of the environment in

 4

which the testing is done, what is being tested, and what kind of testing is in question.

The testing can be module testing, integration testing, conformance testing, and so on

[T3CORE: s. 4]. The test target can be a function library written in some language X, a

web server, or a network of components whose joint behavior is tested via some chosen

interfaces.

The language does not currently provide syntax for real-time testing; events that occur

have no time stamps, and it is not possible to read absolute time, i.e. system time. Hence,

one cannot directly test whether something happens at a given time of day, or whether

events occur within certain tolerance, without building this functionality by writing

custom (external) functions [T3CORE: s. 16.1.0], and by possibly time-stamping events

(function calls, messages) outside the TTCN-3 Core Language. In [TIMED] a solution is

proposed to extend TTCN-3 to handle real-time requirements.

The difference between TTCN-3 and other programming language is that it has been

designed for testing. It provides at language level means for handling test verdicts,

operations for procedure- and message-based communication, and extensive abilities to

specify and match against data.

2.2 Module

The TTCN-3 language element called module corresponds to a compilation unit in

traditional programming languages [T3CORE: ch. 7]. It can be analyzed, compiled or

interpreted, it may contain a single or several test cases, and it can be used as a library by

other modules. The TTCN-3 standard does not mention the relationship between modules

and how they are stored into files. Because of this, some TTCN-3 tools allow one to have

several modules defined within a file, and some tools only understand one module per

file. This may cause problems when the used tool is changed. A smaller problem is that

the used file suffix also varies between tools.

Each module is divided into two parts, definitions part and control part, both of which

are optional. The definitions part contains top-level definitions, such as type definitions,

data (template) and constant definitions, port and component definitions, and function and

testcase definitions. It is possible to import definitions from other modules to make

 5

them visible in the referring module. The control part can be seen as the "main function"

of the module and its purpose is to call the test cases defined in the definitions part. It

contains the logic for executing the test cases in certain order, it can apply execution time

restrictions to the test cases, and it can use the definitions specified in the definitions part

of the module to specify local variables. Because the control part is optional, the used

TTCN-3 tool may provide an alternative way to execute test cases without using the

control part. For example, it can have a graphical user interface from which the executed

test cases can be selected.

It is possible to specify parameters for a module, meaning that when a test case or the

control part of the module is executed, it can read these parameters and behave according

to them. The parameters are like module global constants, whose values are set at the start

of the execution. For example, one could have the address of the test target and maximum

execution time as module parameters.

The following TTCN-3 code fragment shows a module definition of module MyModule ,

which could be stored in file MyModule.ttcn :

module MyModule
{
 // Definitions part
 import from OtherModule all;

 type integer MyPosInt (0 .. infinity);

 testcase tc_myFirstCase() runs on MyComponent sy stem MyTsi
 {
 ...
 }

 // Control part
 control
 {
 execute(tc_myFirstCase(), 10.0); //Maximum ex ecution time 10.0 seconds
 execute(tc_mySecondCase()); //No maximum execution time
 }
}

2.3 A Test Case and Testcase

TTCN-3 Core Language has a language element called testcase [T3CORE: ch. 17].

The difference between testcase and a “test case” is that testcase is language

element, while test case is a general term used in this document to mean a set of checks

done to the System Under Test (SUT), in order to test some specific behavior. A test case

 6

consists of a testcase , that can be seen as the main function of a single case, and of

any other functionality executed in parallel with the testcase . A testcase is always

executed within an entity called component , and it can call normal function s and

altstep s to extend its behavior. The result of executing a testcase is a verdict,

which tells whether the system under test passed the test.

A test case can be both message- and procedure-based [T3CORE: ch .23]. Message-based

testing consists of sending messages to the System Under Test (SUT), receiving messages

from it, checking whether messages were not received in time, and of checking whether

the received messages are in the right order and that they contain right values. Procedure-

based testing consists of calling functions of the SUT, receiving return values and

exceptions, receiving function calls, and of passing function return values and raised

exceptions to the SUT.

2.4 Components, Ports, and Test Configurations

The behavior of a single test case consists of executing functionality (testcases and

functions) in one or more components. A component is a user specified entity, which

contains user-defined port s, via which the component can interact with other

components and the SUT with message and procedure operations [T3CORE: s. 8]. In

addition to the ports, the component may contain private variables and timers. The

component itself does not specify any kind of behavior but it provides an environment for

it. This means that one can start functionality in the component and this functionality can

then use the ports, variables, and timers of the component. The functionality that can be

started in the component can be either a testcase or a function [T3CORE: s. 22.5.

A component is shown conceptually in Figure 2-1.

Component
Port

Port
VariableVariable

Timer

Component
Port

Behaviour:
testcase or

function

Component
Port

Message and/or procedure based
communication

Figure 2-1: Component model.

 7

One of the components that exist during a test case is called Main Test Component

(MTC). It is special in the sense that when a test case is chosen to be executed, this MTC

component is automatically created to execute it. When the MTC reaches the end of its

execution, then the test case ends. The MTC is responsible for creating other components,

which are called Parallel Test Components (PTC), and for starting functionality in them.

The creation of new PTCs and starting of functionality in them can also be done by the

PTCs.

Another special component that exists for the duration of the test case is called Test

System Interface (TSI) component (or just system component or system for short)

[T3CORE: s. 8.3]. Unlike the other components, one cannot start any functionality in it,

and it does not have any internal variables or timers. This component acts as an abstract

interface between the test case and the System Under Test (SUT). The ports of the system

component (TSI) are visible to the SUT Adapter, which routes any messages or procedure

operations seen at these ports between the test case components and the real test system

interface at the SUT (see Figure 2-2).

The components and TSI are abstract TTCN-3 Core Language level constructs. The

actual program that implements the components and test case logic is called TTCN-3

Executable (TE). It interacts with the SUT Adapter via TTCN-3 Runtime Interface (TRI).

The TE, SUT Adapter and TRI are not part of the TTCN-3 Core Language, so they are

explained later in Chapter 3.

When two components want to communicate with each other, the ports of the components

have to be first connected with each other. When a component needs to communicate

with the SUT, its port has to be mapped with one of the ports of the TSI component

Real Test System Interface

TTCN-3 Executable (TE)

TSI Component

Port

Port
Port

Port Component

Port

SUT Adapter
(SA)

SUT

Access
point

Access
point

Abstract Test System Interface

TRI

 Mapping and propagation
of messages

and procedure
operations

Figure 2-2: Test System Interface.

 8

(when a port of a component is connected with a port of the TSI component, it is said that

they are mapped with each other, instead of connected with each other). After this, the

component can perform message-based, procedure-based, or both kinds of

communication operations via the port. What messages and procedure calls can be

performed via the port depends on the type definition of the port. A type definition of the

port specifies whether the port can be used for message-based or procedure-based

communication, or for both, and it contains a list of supported message types and

procedures signatures. The list also specifies the direction in which each item can move

through the port, as seen by the component in which the port is used [T3CORE: s. 8.4.0].

This direction information restricts what kind ports can be connected and mapped with

each other: a port has to be able to receive what a connected port may send. The precise

rules for legal port connections and mappings can be found in [T3CORE: s. 22.2.1].

When the component sends a message or performs a procedure call via its port that is

connected with a port of another component, the message is delivered to the recipient’s

port queue, which is modeled as an infinite length FIFO queue in TTCN-3 [T3CORE: s.

8.1]. In the case the port of the sending component is mapped with a system component

port, the message is delivered to the SUT by some means by the SUT Adapter (SA). It

depends on the implementation of the SA how it knows to deliver the messages to the

right place. The SA is further explained in Chapter 3.

The components are created, their execution is started and stopped, and their port

mappings are done with the configuration operations specified in [T3CORE: ch. 22]. The

following TTCN-3 code fragment shows how the component executing the shown

function creates a new PTC, connects one of its own ports with a port of the PTC, maps

one other port of the PTC with a system port, starts behavior in the PTC, and waits until

the PTC stops its execution, after which it explicitly stops itself:

 9

function f_startup() runs on MyComp
{
 /* A new component of type SomeComp is created, and a reference to this
 * component is stored into variable cp_someComp Ref.
 */
 var SomeComp cp_someCompRef := SomeComp.create;

 /* Local port pt_control is connected with the p ort pt_ctrl
 * of the newly created component.
 */
 connect(self:pt_control, cp_someCompRef:pt_ctrl) ;

 /* Port pt_data of the newly created component i s mapped
 * with the port tcp of the test system interfac e component.
 */
 map(cp_someCompRef:pt_data, system:pt_tcp);

 /* Function tp_someBehaviour() is started in the component,
 * and string "10.10.10.1" is given to it as a p arameter.
 * .start() is a non blocking command, so the ex ecution continues
 * immediately after the below statement.
 */
 cp_someCompRef.start(tp_someBehaviour("10.10.10. 1"));

 // Wait for cp_someCompRef to finish its executi on.
 cp_someCompRef.done;

 // Set own verdict to pass.
 setverdict(pass);

 // Stop own execution.
 self.stop;
}

2.5 Verdict

Every component that exists during a test case has a local object called verdict, which it

can set (setverdict) based on how it experiences the behavior of the other

components and the SUT [T3CORE: ch. 25]. Components can also read their own current

verdict value (getverdict). The possible verdict values a component can set are

none , pass , inconc , and fail . Once a component has set a value for its verdict, it

can only "worsen" the verdict value. What this means is that none can be seen as the best

verdict value and fail as the worst, and the verdict value changes only when a value

worse than its current value is tried to be set. Thus, one could set none verdict to pass ,

and pass to fail , but not fail back to pass or none . The inconc verdict stands

for inconclusive, and it can be used for example in situations, in which the SUT does not

do anything illegal, but an unexpected situation occurs which the test case has not been

designed to handle.

The total verdict of the test case is the worst verdict of the components that participated in

the test, and its value is resolved by the used TTCN-3 tool.

 10

For example, when the testing consists of transferring data with the SUT concurrently in

two different directions, uplink and downlink, there could exist an own PTC component

for handling and verifying the data transfer in each direction. The total verdict of the test

case depends now on the verdicts of the uplink and downlink transfer, which can be seen

as sub-tests of the whole test case. These sub-tests could exist in some other test cases as

stand-alone test cases (uplink data transfer test, downlink data transfer test), or as parts of

more complex test cases.

2.6 Testcases, Functions, and Altsteps

TTCN-3 has three different function-like language elements: testcase , function ,

and altstep [T3CORE: chs 16, 17]. Common to these is that they can define local

variables and timers.

A testcase is a function whose execution is always started in a component, and its

return value is always the total verdict of the test case. The definition of the testcase

contains information on in which kind of component it can be started (runs on), and

what kind of test system interface is used during the test case (system). The execution

of the testcase can be started in the control of part of the module, or directly by the

used TTCN-3 tool when the control part is not used. In addition to any local definitions,

the testcase can use the component internal definitions such as ports and variables.

A normal function can have input parameters, output parameters, input-output

parameters, and it can return a value. It is also possible to specify that the function can

only be called or started within a component of a certain type, which makes the internal

definitions of the component visible to the function (ports, timers, and variables).

TTCN-3 has also external functions , which can be called from the test cases, but

their implementation is outside the TTCN-3. An external function call results in a

TRI operation, which instructs the used Platform Adapter (PA) to call the specified

function (PA will be explained in Chapter 3).

Altstep is used for specifying action whose execution is triggered by some "receiving"

event or operation, such as a timeout or receipt of a message. Like with testcase and

 11

function , it can be given access to the internal definitions of the component. An

example of an altstep is given in Section 2.10 Alternative Behaviour.

The below TTCN-3 fragment defines a component type, and a testcase that be executed

on an instance of the component type:

// Component type definition
type component MyComp
{
 // Component local definitions:

 // Variable
 var charstring g_identifier;
 // Port of type MyPort
 port MyPort pt_port;
}

/* Testcase definition. This testcase gets executed in Main Test Component
 * of type MyComp, and the used Test System Interfa ce component is of
 * type MyTsiComp.
 */
testcase tc_myCase(in charstring p_id)
 runs on MyComp system MyTsiComp
{
 g_identifier := p_id;
 pt_port.send(g_identifier);
 ...
}

2.7 Types and Values

TTCN-3 provides a set of basic and structured types, from which the user can derive own

sub-types by restricting their values [T3CORE: s.6]. All these root types are listed in

Table 2-1. The word "range" in the sub-type column means, that the user can define an

own subtype of the root type by specifying a range of valid values to it, the word "list"

means that the user can specify a list of valid values for the type, and "length" means a

length restriction for a type that can be indexed. There are no default restrictions on the

root types, so a value of type integer or float can hold any value from -infinity to

infinity, and a string have a length from zero to infinity. In practice, the maximum values

depend on the used TTCN-3 tool.

Special to TTCN-3, it is possible to define a field of structured type record to be

optional, meaning that its value can be omitted, and it can be checked whether the field

value has been set [T3CORE: ss. 6.3.1, C.15]. The union type of TTCN-3 is different

from the union type of C-language. It contains only the alternative or variant that has been

assigned to it; the alternatives are not different representation formats of the data stored

 12

into the union. It is possible to ask from a value of union type if a specified variant is

stored into it, by using the predefined ischosen function [T3CORE: ss. 6.3.5, C.16].

TTCN-3 is not strongly typed language [T3CORE: s. 3.1], but it does require type

compatibility as specified in [T3CORE: s. 6.7]. Strong typing is required in the case of

enumerated type, and in the communication operations that are explained in Section

2.9. In the case of non-structured types the type compatibility is defined as:

“value "b" (of type B) is compatible to type "A"if type "B" resolves to the same
root type as type "A" (i.e. integer) and it does no t violate subtyping (e.g. ranges,
length restrictions) of type "A".” [T3CORE: s.6.7.1]

This mean that one can assign a value of type A to a value of type B, when the allowed

values of A is a subset of the allowed values of B.

There is no automatic type conversion or promotion like in C in TTCN-3, so it is not

possible to mix for example integers and floats in the same expression. TTCN-3 does

provide a set of predefined functions with which it is possible to convert a type of a

certain kind to another kind. There is also no "free" type in TTCN-3, that could be used

for containing a value of any kind. However, there exists a type called anytype that can

Table 2-1: Overview of TTCN-3 Types [T3CORE: s. 6.0, Table 3].

Class of type Keyword Sub-type
integer range, list
char range, list
universal char range, list
float range, list
boolean list
objid list

Simple basic types

verdicttype list
bitstring list, length
hexstring list, length
octetstring list, length
charstring range, list, length

Basic string types

universal charstring range, list, length
record list
record of list, length
set list
set of list, length
enumerated list

Structured types

union list
Special data types anytype list

address
port

Special configuration types

component
Special default types default

 13

be used for storing value of any other type, that is defined in the same module in which

the value of anytype is defined. In other words, the anytype is defined "as a

shorthand for the union of all known types in a TTCN-3 module" [T3CORE: s. 6.4].

When a component performs a communication operation via its port that is mapped with

a TSI port, it is possible, but not required, to use special address type to address a

specific SUT or an entity within the SUT [T3CORE: s. 8.6]. This address type is specified

separately in each module, and it can be set as one of the user specified types, or it can be

left as open type. In the case it is left as open type, and when a message or procedure

operation is received from the SUT, one can use it to store the address value of the SUT

without understanding its contents. The stored address value can then be used when

communicating back to the same SUT entity. The SUT Adapter can use the address value

(when present) to deliver information between the correct test case component and SUT

entity.

2.8 Templates

A template is data structure, that can be "used to either transmit a set of distinct values

or to test whether a set of received values matches the template specification" [T3CORE:

s. 14.0].

A template specifies a single value when it is used for generating data to be transmitted,

and it can be optionally parameterized. A parameterized template can contain an

expression whose value specifies the value of the template. When the template specifies a

value for a structured type, some of the fields of the value can contain fixed values and

some are set at run time with the parameters. This is very useful for defining differently

parameterized templates of the same type for different situations. For example, when a

message corresponding to a protocol data unit (PDU) of protocol X needs to be

transmitted, it is feasible that the test case writer needs only to specify values for the

fields of interest, and default values are used for the other fields. For example, one

parameterized field could be message sequence number, which needs to be increment

after each sent PDU. The below TTCN-3 fragment shows a definition for the PDU type

and a parameterized template for it:

 14

// Type definition of type MyPdu.
type record MyPdu
{
 integer seqNum,
 charstring data
}

// Parameterized template of type MyPdu with identi fier a_myPdu_s.
template MyPdu a_myPdu_s(integer p_seqNum) :=
{
 seqNum := p_seqNum,
 data := "Who are you?"
}

When a template is used in the receiving direction to match with received values, each

template can specify a set of values that it matches with. The template definition below

matches any value, which is of type MyPdu, has seqNum within range 100 to 200, and

contains as data either the character string "Alice" or "Bob":

// Matching template. This cannot be sent, only com pared against received data.
template MyPdu a_myPdu_r :=
{
 seqNum := (100 .. 200),
 data := ("Alice", "Bob")
}

In TTCN-3 it is possible to construct a new template from already specified templates, by

using them as (field) values within the new template, either by directly assigning them or

by passing them as parameters to the new template. A new template can also be defined

by modifying a template by redefining it partially. These features make the creation of

very complex values easy, but it is also very easy to specify complex hard-to-maintain

dependencies between templates. A change in one template might change the matching of

several other templates, thus care must be taken and planning used when specifying large

sets of test data. The below example shows the use of existing templates to specify new

ones:

template charstring a_allowedData := ("Alice", "B ob");
template integer a_validRange := (100 .. 200) ;

// a_validRange can be passed to a_myPdu2_r as a pa rameter
template MyPdu a_myPdu2_r(template integer p_ a_seqNum) :=
{
 seqNum := p_a_seqNum,
 data := a_allowedData
}

// Modified template, uses a_myPdu2_r as basis.
template MyPdu a_myPdu3_r(template integer p_ a_seqNum)
 modifies a_myPdu2_r :=
{
 data := "Eve"
}

 15

In addition to be able to specify a list or a range of values, TTCN-3 provides other

matching mechanisms, such as matching against a string pattern (similar to a regular

expression), string of specific length, complement of a list, omitted value, any value, and

any-or-omitted value. The matching mechanisms are introduced in [T3CORE: s. 14.3]

and their usage is specified in Annex B of the same document.

The examples given in this section concerned only type templates. Of equal importance,

TTCN-3 also provides syntax for specifying templates for function calls. These templates

can be used to specify which SUT function should be called with what parameter values,

and what calls are expected from the SUT.

2.9 Communication Operations

TTCN-3 has both message- and procedure-based communication operations with which

components can interact with each other and with the SUT. All the communication

operations are listed in Table 2-2.

The operations send , call , reply , and raise are called sending operations, and they

use syntax similar to each other. Of these, send , reply , and raise operations are

automatically non-blocking, meaning that execution continues after the operation call

without waiting for the recipient to actually receive and handle the message or procedure

Table 2-2: Overview of TTCN-3 communication operations [T3CORE: s. 23.10, Table 17].

Communication operations
Communication operation Keyword Can be used at

message-based
ports

Can be used at
procedure-based

ports
Message-based communication
Send message send Yes
Receive message receive Yes
Trigger on message trigger Yes
Procedure-based communication
Invoke procedure call call Yes
Accept procedure call from remote entity getcall Yes
Reply to procedure call from remote entity reply Yes
Raise exception (to an accepted call) raise Yes
Handle response from a previous call getreply Yes
Catch exception (from called entity) catch Yes
Examine top element of incoming port queues
Check msg/call/exception/reply received check Yes Yes
Controlling operations
Clear port clear Yes Yes
Clear and give access to port start Yes Yes
Stop access (receiving & sending) to port stop Yes Yes

 16

operation. The call operation is automatically non-blocking only when the called

procedure is explicitly defined to be non-blocking [T3CORE: s.23.3.1.4], or when the

caller explicitly specifies that it wants to continue execution without waiting for response

from the callee [T3CORE: s.23.3.1.2]. This makes it possible to postpone the response

handling and perform other operations meanwhile. All the sending operations specify the

local port used for the operation, what information is to be sent, optional recipient

information, and an optional response handling part. The information to be transmitted

can be the value of a local variable or constant, or like in most cases, a predefined

template. In the case the component port is connected with the ports of several other

components, the recipient information is used to specify a single recipient. Several

recipients cannot be specified, because TTCN-3 does not support multicasting or

broadcasting as of writing this document. The following code fragment shows an example

procedure call and sending of a message:

/* Call function someFunction with parameter values firstParam and
 * secondParam, without waiting the function to ret urn.
 */
pt_myPort.call(someFunction:{firstParam, secondPara m}, nowait);

/* Send integer value 1 via port pt_myPort to compo nent that has reference
 * cp_someCompRef
 */
pt_myPort.send(integer:1) to cp_someCompRef;

/* Send parameterized template a_myPdu_s */
pt_myPort.send(a_myPdu_s(currentSeqNum));

The operations receive , getcall , getreply , catch , trigger , and check are

receiving operations. All these operations, except trigger , are used to test whether the

specified event is as the first event in the port queue of the specified port. If the event is

not present, the execution of the component becomes blocked until a matching event

occurs. If the event is present, it is then removed from the port queue and the execution

continues with the next statement. Exception to this is the check operation, which does

not remove the event from the queue. Operation trigger differs from the other

receiving operations so that it removes any non-matching events from the queue until a

match is found, after which the execution continues. All the receiving operations specify

the examined local port, a matching condition (template), optionally the expected sender,

and an optional assignment part. The following TTCN-3 code shows a few different

receiving statements:

 17

/* Match with integer of value 1, received via port pt_myPort, and sent
 * by component cp_someCompRef
 */
pt_myPort.receive(integer:1) from cp_someCompRef;

/* Match with a value, that matches with the restri ctions posed by
 * template a_myPdu_r, and store the received value to variable localVar
 */
pt_myPort.receive(a_myPdu2_r(currentSeqNum)) -> val ue localVar;

/* Match with function call of myFunction, with any first parameter value
 * and 1 as the second parameter value, and store t he first parameter value
 * into local variable firstParam
 */
pt_myPort.getCall(myFunction:{*, integer:1}) -> par am (firstParam, -);

Because of the blocking semantics of the receiving operations, they are usually used alone

only for example for synchronization, when it is sure that the expected event has occurred

or will occur as the first event of the specified port. If an event other than what was

expected occurs as the first event, the FIFO nature of the port queues causes a deadlock

situation: The receiving operations can check only the first event in the queue, not any

other events. Hence, a non-matching event blocks the processing of any other events,

because the event is not removed from the queue by the non-matching operation. For

these situations TTCN-3 provides the alt statement.

2.10 Alternative Behaviour

In a test case it is not always known beforehand in which order certain events occur. The

SUT can have several legal actions it may perform, and it can behave completely

erroneously. The situations in which several alternative events are possible are handled by

TTCN-3 alt statement. It is specified in [T3CORE: s.20.1] and its evaluation algorithm

is specified in more detail in [T3OS: s.9.3].

The alt statement specifies a list of receiving operations (alternatives), with which the

occurrence of events of interest is conditionally examined. The receiving operations are

receive , getcall , getreply , catch , trigger , and check (explained in the

previous section), with the addition of done and timeout [T3OS: s.9.3].

“Conditionally examined” means that each alternative has a boolean guard (expression)

before it, and only when its value evaluates to true, the receiving operation following it is

tried to be evaluated. The done operation blocks the execution of the calling component,

until the specified other component has finished its function execution. The timeout

 18

operation blocks until the specified timer reaches a defined value. If the alternative

matches with an event, then the code block following the alternative is executed, after

which the execution continues after the alt statement, unless a repeat statement is

encountered. If the alternative does not match, then all the following alternatives are tried

in the order in which they are listed within the alt statement. Repeat statement can be

used to re-enter the alt statement. It is possible to write nested the alt statements, by

writing a new alt statement within the code block of an alternative.

The below TTCN-3 code fragment shows how the alt statement is used to handle the

events of two ports (pt_myPort , pt_control) and a timer (t_timer):

// Function-local timer
timer t_timer;

// Function-local variables
var MyPdu myPdu;
var integer count := 0;

// Start timer
t_timer.start(10.0);

// Alt-statement
alt
{
 // Receive maximum of maxCount PDUs that match w ith template a_myPdu_r
 [count < c_maxCount] pt_myPort.receive(a_myPdu_r) -> value myPdu
 {
 // Forward the received message via port pt_m yOtherPort
 pt_myOtherPort.send(myPdu);

 setverdict(pass);
 count := count + 1;

 // Wait for next PDU
 repeat;
 }

 /* Else if we receive something else than a_myPd u_r (plain .receive matches
 * with everything)
 */
 [/* Empty boolean guard is treated as true */] p t_myPort.receive
 {
 log("Received something else");

 setverdict(fail);
 // Execution continues at line “self.stop”
 }

 // Else if we receive from control port an instr uction to stop
 [] pt_control.receive(charstring: "stop")
 {
 log("Received control message ""stop"" via pt _contrl");
 // Execution continues at line “self.stop”
 }

 // Else if timer expires
 [] t_timer.timeout
 {
 // Execution continues at line “self.stop”
 }
}

self.stop;

 19

The evaluation of alt statement is based on concept called snapshot, which is taken

when the alt statement is entered or re-entered. Snapshot is described in the standard as

follows:

“A snapshot is considered to be a partial state of a test component that includes
all information necessary to evaluate the Boolean c onditions that guard alternative
branches, all relevant stopped test components, all relevant timeout events and the
top messages, calls, replies and exceptions in the relevant incoming port queues.
Any test component, timer and port which is referen ced in at least one alternative
in the alt statement, or in top alternative of an a ltstep that is invoked as an
alternative in the alt statement or activated as de fault is considered to be
relevant.” [T3CORE: s. 20.1.1]

Altstep is a function like element in TTCN-3 that can be used instead of the receiving

operations in the alt statement. The below altstep definition

altstep alt_timeoutHandler(timer p_timer)
{
 [] p_timer.timeout
 {
 log("timer expired");
 }
}

could be used within an alt statement in the following manner:

timer t_timer;
t_timer.start(10.0);

alt
{
 ...
 // If we receive from control port an instructio n to stop
 [/* Empty boolean guard is treated as true */]
 pt_control.receive(charstring: "stop")
 {
 log("Received control message ""stop"" via pt _contrl");
 // Execution continues at line “self.stop”
 }

 // Altstep is used to handle t_timer
 [] alt_timeoutHandler(t_timer);
 {
 log("alt_timeoutHandler handled the timeout e vent");
 // Execution continues at line “self.stop”
 }
}

An altstep can also be activated as one of the default alternatives. All the activated

defaults are that are tried to be evaluated, when none of the listed alternatives in the

executed alt statement matches [T3CORE: ch. 21], or when a stand-alone receiving

statement does not match.

 20

2.11 Timers

TTCN-3 provides at language level syntax for specifying both implicit and explicit

timers. The implicit timers are the timers whose values specify maximum execution time

for testcases and function calls [T3TRI: ss. 23.3.1.2, 27.1]. These timers cannot

or need to be started, read, or stopped by the user. Explicit timers are the user created

timers that can be started, read, and stopped, their timeout can be waited for, and they can

be given as parameters to functions and altsteps . [T3TRI: chs. 11, 24]. In the

previous section a timer was used in the context of the alt statement, to specify

maximum time how long the component waits for messages to be received from the

specified ports, until it continues its execution.

2.12 Encoding and Decoding

All the values that exist during a test case can be thought of being in the abstract TTCN-3

type definition form. Their tool specific internal representation form is of no concern to

the test case writer. When these values are sent between test case components, they can

be passed between the ports of the components in their internal representation form.

However, when a value of certain type is sent by a test case component to the SUT via

Test System Interface, then the test case writer wants to specify the transfer syntax of the

values. All the values that are sent through the Test System Interface ports to the SUT are

encoded into some transfer syntax form by the codec system of used TTCN-3 tool.

TTCN-3 does not specify any tool independent way to specify transfer syntax for the

data, but it is possible to add encode and variant attributes to a module, group, type

and template, and field definitions. These attributes are user specified hints for the used

codec system how the values should be encoded. The codec system then interprets the

attributes in a tool or codec specific manner.

For example, the plain type definition

type integer SeqNum;

does not say anything about its transfer syntax; it could be sent as a 32bit length integer

value in network byte order; it could be sent as a sequence of 1-bits of length seqNum; or

 21

it could be sent as a sequence of ASCII-characters containing a textual representation of

the value in English, such as “one-hundred fifty-one”, if this is the format understood by

the recipient.

A type definition with attributes looks like this:

type integer SeqNum with
{
 encode "integer 32 bits";
 variant "network byte order";
}

The encode and variant attributes are text strings without any restrictions on their

content or syntax. The difference between encode and variant is that the latter one

is meant for refining the former.

When a value is sent via Test System Interface to the SUT, it is first automatically passed

to some codec, which may read the attributes of the value, and do the encoding based on

them. It may also do the encoding based on the type identifier or some other information.

Once the value has been encoded, it is passed to the SUT Adapter by the TE (an entity

which executes or interprets the test cases, explained in Section 3.1) as a parameter of a

TRI interface communication operation (Sections 3.4, 3.5). Therefore, the SA receives the

data always in the transfer syntax form and it does not need to understand its contents. In

the opposite direction, the SA passes the data received from the SUT in the transfer

syntax form to the TE, which takes care of decoding of the data.

The interface via which the codecs are called to do encoding and decoding is specified in

the standard [T3TCI: s. 7.3.2 TCI-CD], and the data interface which gives access to the

internal representation of the TTCN-3 data types is specified [T3TCI: 7.2 TCI Data], thus

it is possible to write own encoders and decoders. How the right codec is called by the TE

depends on the used TTCN-3 tool. By using a proprietary interface, the tool could tell the

codec writer which types are present in the test case, and the codec writer could then

assigns a codec for each of the types, after which the tool knows to call the right codec

based on the type identifier of the value to be encoded. Another alternative is that the tool

tells the codec writer what different encoding attributes have been defined in the test case,

and the codecs are assigned and called based on the attributes the types have. The codecs

might also be called based on the used TSI-ports. Since how the codecs are made known

 22

to the TE and taken into use is outside the scope of the standards, there is variation

between approaches taken by different TTCN-3 tool vendors.

The codec writer does not necessarily have to assign a unique codec for each different

type or attribute. The same codec could be used in different situations, because it can be

parameterised at the encoding time by the type and the effective attributes of the value

that is being encoded. This information can be used by the codec to determine how it

should do the coding this time. For example, there could a single codec that knows how to

handle all the different string types of TTCN-3. It could use the root type identifier of the

to-be-encoded value to access it properly, and use its encoding attributes to determine the

right transfer syntax for it.

 23

3 TTCN-3 RUNTIME INTERFACE
The general structure of TTCN-3 test system implementation is explained both in

standard ETSI ES 201 873-5 V1.1.1 (2003-02) “Methods for Testing and Specification

(MTS); The Testing and Test Control Notation version 3; Part 5: TTCN-3 Runtime

Interface (TRI)” [T3TRI] and in ETSI ES 201 873-6 V1.1.1 (2003-07) “Methods for

Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part

6: TTCN-3 Control Interface (TCI)” [T3TCI]. The former part concentrates on the

interfaces with which the SUT Adapter and Platform Adapter interact with the rest of the

test system. The latter part covers test management and control, which, along with other

things, specifies the interface for user-implemented codecs.

This chapter gives an overview what interfaces and components are present in TTCN-3

test system implementation. After this the TTCN-3 Runtime Interface of the test system is

explained in more detail.

3.1 Structure of TTCN-3 Test System

There are a few differences between Part 5 and Part 6 of the TTCN-3 standard how some

of the entities are named and grouped in the test system, but the main idea is the same.

Figure 3-1 shows the test system based on them, and it depicts the elements that are

present in a real test system (program or several programs) that can execute test cases

against a SUT. Four main elements can be distinguished in the TTCN-3 test system

Test Management and Control (TMC)

Test
Management

(TM)

Component
Handling (CH)

Coding /
Decoding (CD)

TTCN-3 Executable (TE)

SUT Adapter (SA) Platform Adapter (PA)

System Under Test (SUT)

Logging (TL)

TCI

TRI

Figure 3-1: General Structure of TTCN-3 Test System.

 24

implementation: Test Management and Control (TMC), TTCN-3 Executable (TE), SUT

Adapter (SA), and Platform Adapter (PA). As the standard states, the decomposition of

the test system into smaller entities is only a conceptual aid to define interfaces between

the entities (e.g. TCI-CD, codec interface between the TE and CD), thus in a real test

system implementation this division does not need to be made. The four main elements

could all be different parts of the same executable tester program, they could be different

programs running on the same device, or they could be different programs running on

different devices. How the elements are distributed between programs and devices

depends on the used TTCN-3 tool, and whether it supports distribution of the TTCN-3

Executable entity as specified in [T3TCI]. Two standardized interfaces, TTCN-3 Control

Interface (TCI) and TTCN-3 Runtime Interface (TRI), exist between the TE and TMC,

and between the TE and SA and PA, and they are specified in [T3TCI] and [T3TRI]

respectively.

The TE entity corresponds to the executable code resulting from compilation or

interpretation of an Abstract Test Suite (ATS), which consists one or more TTCN-3

modules. The ATS may have been written in the TTCN-3 Core language described in

Chapter 2, or by using some other alternative format such as the TTCN-3 graphical

representation format [T3GFT]. Along with the Executable Test Suite (ETS)

corresponding to the ATS, the TE contains a TTCN-3 Runtime System (T3RTS), which

handles the interaction of the TE between the TMC, the SA, and the PA entities. It may

also contain a tool specific codec system entity (EDS), which is used for encoding and

decoding of the data that is sent to and received from the SUT via the SUT Adapter. The

T3RTS and EDS are described in [T3TRI: ss. 4.1.2.2, 4.1.2.3] only. The TE can also use

a Coding and Decoding (CD) entity to do the encoding and decoding of the data. The

interface between the TE and the CD entity is called TCI-CD interface, and it is specified

in [T3TCI: s. 7.3.2].

The TMC entity contains a Test Management (TM) entity, a Component Handling entity

(CH), the Coding and Decoding CD (CD) entity, and a Test Logging (TL) entity. In

[T3TRI] the TMC is actually called as TM, and the TM is called as Test Control. The TM

entity may have a user interface. It handles the overall test management by passing

TTCN-3 module parameters to the TE, and by instructing it to start and stop execution of

 25

the test cases. The CH entity enables the distribution of the TE over several devices (if

required) by passing information of test case events between the distributed TEs. The CD

entity provides the TE codecs, which are used by it to encode TTCN-3 values into

transfer syntax form, when these are sent to the SUT, and to decode data in transfer

syntax form back into TTCN-3 values, when the data is received from the SUT. The

codecs can be taken into use by using type the encoding attributes described in Section

2.12. The TL entity is responsible for maintaining test logs, which consists of events the

TE notifies it about.

The SUT Adapter (SA) realizes the message- and procedure-based communication with

the SUT. It may establish static connections with the SUT at the beginning of each test

case based on the used TSI ports, and dynamically during it when components map and

unmap their ports with the TSI ports (see Figure 2-2). How the SA knows where and

how to establish the connections, and what components use which connections is outside

the scope of the standards. The realization of the communication operations (e.g. send ,

receive , call , getcall) is divided between the TE (namely T3RTS) and the SA in

the standard in the following way:

“The T3RTS entity should implement all message and procedure based communication
operations between test components, but only the TT CN-3 semantics of procedure based
communication with the SUT, i.e. the possible block ing and unblocking of test
component execution, guarding with implicit timers, and handling of timeout
exceptions as a result of such communication operat ions. All procedure based
communication operations with the SUT are to be rea lized and identified (in the case
of a receiving operation) in the SA as they are mos t efficiently implemented in a
platform specific manner.” [T3TRI: ss. 4.1.2.2]

“It (SA) is responsible to propagate send requests and SUT action operations from
the TTCN-3 Executable (TE) to the SUT, and to notif y the TE of any received test
events by appending them to the port queues of the TE. Procedure based communication
operations with the SUT are implemented in the SA. The SA is responsible for
distinguishing between the different messages withi n procedure-based communication
(i.e. call, reply, and exception) and to propagate them in the appropriate manner
either to the SUT or the TE” [T3TRI: ss. 4.1.3]

In short, the SA handles the actual interaction with the SUT, when this is requested by the

TE or initiated by the SUT, and it also notifies the TE about any incoming events coming

from the SUT (messages, function calls). The TTCN-3 semantics of communication is

handled by the TE, meaning that test case components are blocked by the TE for example

in receive or getcall port operations until a matching event is received. The SA is

not aware of the states of the components, but it knows what component is mapped with

which TSI port.

 26

The Platform Adapter (PA) realizes the external function call statements of TTCN-3, and

it provides to the TE a timer service. When an external function call statement is

encountered during execution of a test case, the TE requests the PA to call the specified

function. Similarly, when a timer is created, started or stopped in a test case, the TE

instructs the PA to do so. When a timer expires, the PA notifies the TE about this.

Because the used TTCN-3 tool might need timers in its own implementation, it may

provide the possibility of using its own timer system to handle test case timers, instead of

having to implement the timer services in the PA.

3.2 Overview of TTCN-3 Runtime Interface

TTCN-3 Runtime Interface consists of two sub-interfaces. The one between the TTCN-3

Executable (TE) and the SUT Adapter (SA) is called triCommunication interface, and the

other one between the TE and the Platform Adapter (PA) is called triPlatform interface

(Figure 3-2). These interfaces are specified in implementation language independent

manner in CORBA Interface Definition Language, but the standard also gives concrete C

and Java language mappings of the interfaces. In addition to the triCommunication and

triPlatform interfaces, the standard specifies a data interface, which is a collection of data

types used in the two interfaces.

The TRI interface is specified as a procedure-based interface. Most of the operations the

interface provides are implemented by the SA and PA, and called by the TE. These

operations along with their corresponding TTCN-3 Core Language statements are listed

in Table 3-1. The first column specifies a TTCN-3 statement, and the second column lists

the resulting TRI operation(s). The operations provided by the TE and called by the SA

TTCNTTCNTTCNTTCN----3 3 3 3 Executable Executable Executable Executable ((((TETETETE))))

SUT Adapter SUT Adapter SUT Adapter SUT Adapter
((((SASASASA))))

Platform AdapterPlatform AdapterPlatform AdapterPlatform Adapter
((((PAPAPAPA))))

TRI
triCommunication triPlatform

System Under Test System Under Test System Under Test System Under Test
((((SUTSUTSUTSUT))))

”Function and message based communication”

Figure 3-2: TTCN-3 Runtime Interface (TRI).

 27

and PA are listed in Table 3-2. The standard specifies the following requirement for TRI

operation implementation:

Each TRI operation call shall be treated as an atom ic operation in the calling
entity. The called entity, which implements a TRI o peration, shall return control to
the calling entity as soon as its intended effect h as been accomplished or if the
operation cannot be completed successfully. The cal led entity shall not block in the
implementation of procedure-based communication. Ne vertheless, the called entity
shall block after the invocation of an external fun ction implementation and wait for
its return value. [T3TRI: s 4.3]

This prevents the blocking of the caller, meaning that if the TE happens to be

implemented with a single execution thread, the whole test case being executed does not

halt when one of the test case components for example calls a SUT function, which might

never return in the case it behaves erroneously. A test case component may also want to

continue its execution without waiting for the function call to return.

Table 3-1:Correlation between TTCN-3 statements and TRI Operation invocations [T3TRI: s.

5.1.3, Table 2, with additions]. Calling of the operations marked with a * depends on the

parameters of the TTCN-3 operation.

TTCN-3 Operation Name TRI Operation Name TRI Interface Name

execute triExecuteTestCase

triStartTimer*

triCommunication

triPlatform

TE�SA

TE�PA

map triMap

unmap triUnmap

send triSend

triCommunication

TE�SA

call triCall

triStartTimer*

triCommunication

triPlatform

TE�SA

TE�PA

reply triReply

raise triRaise

(sut.)action triSUTactionInformal*

triSUTactionTemplate

triCommunication

TE�SA

start (timer) triStartTimer

stop (timer) triStopTimer

read (timer) triReadTimer

running (timer) triTimerRunning

TTCN-3 external function triExternalFunction

triPlatform

TE�PA

 triSAReset triCommunication TE�SA

 triPAReset triPlatform TE�PA

 28

As it can be seen from the tables, one purpose of the PA is to provide a timer service to

the TE to realize the timers used in TCN-3 in some platform dependent manner. Second

purpose of the PA is to realize the external function calls that can be made from test

cases. More detailed description of the PA operations is outside the scope of this

document.

The following sections concentrate on the TE-SA interface, which is used by the TE to

request the SA to realize the TTCN-3 port operations performed during test cases. The

same interface is used by the SA to inform the TE about any messages and procedure

operations it receives from the SUT.

Any references to triCommunication and TRI interfaces in rest of this work mean the

interface between the TE and the SA. The operation signatures shown in this chapter are

in CORBA Interface Definition Language (IDL).

3.3 Connection Handling

The operations triExecuteTestCase() , triMap() , and triUnmap() are called

Connection Handling operations in the standard [T3CORE: s. 5.5.2]. With these

operations the TE tells the SA what kind of TSI is used in the testcase that is being

executed, and what mappings (port connections) exist between the test case components

and the TSI component. The SA can use this information to establish and close

connections with the SUT at the beginning of each test case and dynamically during it.

Immediately before starting execution of a test case, the TE calls the SA implemented

operation triExecutedTestCase() . The SA receives as the parameters of this

Table 3-2: Operations provided by the TE and called by the SA and PA.

TRI Operation Name: TRI Interface Name:

triEnqueueMsg

triEnqueueCall

triEnqueueReply

triEnqueueException

triCommunication SA�TE

triTimeout triPlatform PA�TE

 29

operation the identifier of the test case whose execution is about to start, and the port

identifiers of the used TSI component:

TriStatusType triExecuteTestCase(in TriTestCaseIdTy pe testCaseId,
 in TriPortIdListTy pe tsiPortList)
[T3TRI: s.5.5.2.1]

The SA can establish predefined connections for the TSI ports based on the port list, but it

does not have to.

Mapping of a component port with a TSI port results in the TE calling the TRI operation

triMap() . This operation tells the SA that the specified ports are now mapped together:

TriStatusType triMap(in TriPortIdType compPortId,
 in TriPortIdType tsiPortId)
[T3TRI: s.5.5.2.2]

From the TriPortIdType the SA can extract name and type of the port, and identifier

of the component that owns it. The SA can use this information to establish a new

connection with the SUT, and to select the right established connection when the

component sends a message or performs a procedure operation via this port.

Similar to the triMap() , triUnmap() is used by the TE to inform the SA that a

mapping between a component port and TSI port has been removed, as the result of the

execution of the TTCN-3 unmap statement.

3.4 Message-based Communication

The message-based communication operations consist of triSend() and

triEnqueueMsg() operations.

When a TTCN-3 send statement is executed in a test case, the TE requests the SA to

deliver the sent message to the SUT. This is done by the TE by calling the

triSend() operation, which is defined as:

TriStatusType triSend(in TriComponentIdType compone ntId,
 in TriPortIdType tsiPort Id,
 in TriAddressType SUTaddr ess,
 in TriMessageType sendMes sage)
[T3TRI: s.5.5.3.1]

 30

As the parameters of this operation the SA receives identifier of the sending component,

the TSI port via which the message was sent, SUT address information if present in the

send statement (address type is explained in Section 2.7 Types and Values, and in

[T3CORE: s. 8.6]), and the message in encoded form. The SA can use the component and

port identifiers to choose the right connection, that might have been established after the

triExecuteTestCase() or a triMap() operation.

When the SA receives a message from the SUT, it can forward it to the TE by calling the

operation triEnqueueMsg() :

void triEnqueueMsg(in TriPortIdType tsiPortId ,
 in TriAddressType SUTaddres s,
 in TriComponentIdType component Id,
 in TriMessageType receivedM essage)
[T3TRI: s.5.5.3.2]

By using the mapping information the SA has stored during triExecute-

TestCase() and triMap() operations, it can decide which TSI port and component

identifiers to use, i.e., via which TSI port to which component it should send the message

that it has received. It should be noted that the port identifier (tsiPortId) used in the

operation identifies a TSI port, not the component port that is mapped with the TSI port.

Because only one port of the component can be mapped with a certain TSI port at a time,

the TE knows to route the message to the right component port ([T3CORE: s. 8.2]

specifies the allowed connections).

When the SA calls the triEnqueueMsg() operation, the TE notifies internally the

receiving component, which might be blocked at a receive or alt statement, about

this new event. There is no operation called “triReceive()” to correspond with the

TTCN-3 port operation receive , thus the execution of the receive statement in a test

case cannot be observed at the TRI interface.

3.5 Procedure-based Communication

The procedure based communication operations consist of the operations triCall() ,

triReply() , triRaise() , which are called by the TE and implemented by the SA,

and of the operations triEnqueueCall() , triEnqueueReply() , and

 31

triEnqueueException() , which are called by the SA and implemented by the TE.

Like with the TTCN-3 receive statement, there are no TRI operations such as

“triGetCall(), triGetReply(), triCatch()”, since the triEnqueue * () operations are used

to enqueue new received events to the test case components.

The triCall() , triReply() , and triRaise() are called by the TE when in test

case a component executes the corresponding call , reply or raise statement. The

SA should then realize these procedure operations at the SUT (i.e., it should call a SUT

function, or pass a return or exception value to a function call when the SUT is the caller).

All these TRI operations are very similar. The TE tells with the operations the identifier

of the component that executed the statement (componentId), from which TSI port the

request comes from (tsiPortId), optionally a SUT destination address

(SUTaddress), and identifier of the SUT function that is the target of the operation

(signatureId). In the case of triCall() and triReply() , a list of used function

parameters is also present (parameterList). This parameter list specifies the

parameter values and their parameter passing mode, which can be in , out , or inout ,

depending on the direction in which the parameter passes data (into the function, out of

the function). All the parameter values have been encoded by the used codec system, thus

the SA does not need to know their structure or to do any encoding and decoding. In the

triReply() operation, there is also an additional parameter that specifies the return

value of the function. The operation triRaise() specifies only an exception value and

no parameter values.

The signature of the triCall() operation is shown below:

TriStatusType triCall(in TriComponentIdType compo nentId,
 in TriPortIdType tsiPo rtId,
 in TriAddressType SUTad dress,
 in TriSignatureIdType signa tureId,
 in TriParameterListType param eterList)
[T3TRI: s.5.5.4.1]

In the opposite direction, when the SUT calls a function whose implementation is within

the test case, or it returns or throws an exception from a function call that is made from

the test case, the SA notifies the TE about this event by using the triEnqueueCall() ,

triEnqueueReply() , and triEnqueueException() operations. These are

 32

again very similar to each other, so only the definition of the triEnqueueCall() is

shown below:

void triEnqueueCall(in TriPortIdType tsiPort Id,
 in TriAddressType SUTaddr ess,
 in TriComponentIdType compone ntId,
 in TriSignatureIdType signatu reId,
 in TriParameterListType paramet erList)
[T3TRI: s.5.5.4.4]

When the SA somehow catches a function call made by the SUT (there could be a thread

waiting for function calls), it passes the information of the function call to the TE by

using the triEnqueueCall() , which has parameters identical to its counterpart

triCall() . Like in the case of triEnqueueMsg() , the TE can determine the right

values for the TSI port and the component identifier required in the

triEnqueueCall() , by using the mapping information it has stored during the

triExecuteTestCase() and the triMap() operations, along with any information

it has on the connections it has established with the SUT.

 33

4 GENERAL PURPOSE SA
A new concept called Connection Manager System is specified in this chapter. It is a

framework for such a SUT Adapter, that provides simultaneously different kinds of

connections with the test target. A connection can be of any kind: it can be a simple TCP

over IP connection, or it can be a connection that performs library function calls at the

SUT.

The framework has the following properties: Connections can be established and

controlled from TTCN-3 test case level during test case execution. This can be done in a

uniform way, meaning that there is a fixed set of operations with which all the different

kinds of connections can be handled. The system does not limit the number of different

connections to the number Test System Interface ports. A test case component can

configure a connection via any TSI port by using any connection means, independently of

any other connections that other components might have configured via the same TSI

port. All the control information is separated from user data, meaning that the type

definitions of the tested protocol or function parameter types contain no extra fields. New

connection methods can be added easily into the system, and they can have their own

parameters, which affect how connections are established and controlled.

4.1 Motivation and Background

The purpose of the SA is to provide means for the TE to communicate with the SUT. As

it was described in the Chapters 2 and 3, TTCN-3 provides both message- and procedure-

based communication operations between the TE and the SA. When the communication

is message-based, from the TE to the SUT direction, the SA receives an instruction from

the TE to deliver a message from a TE component to a certain access point at SUT. In the

case of procedure-based communication, the SA receives an instruction to call a function,

or to reply to function call, at a certain access point at the SUT.

In both cases, the SA has to transfer instructions from the TE to an entity at a SUT service

access point (SAP), which finally performs according to the instructions. The purpose of

the SAP entity is for example to pass messages to the SUT, or to call SUT interface

 34

functions and to pass return values to them. Depending on the case, the SAP entity can be

seen either as part of the SA, or as a part of the SUT. In the case the SUT is a TCP/IP -

capable WWW server, then the SAP entity is the TCP/IP implementation of the SUT,

with which the SA establishes TCP/IP connections. If the SUT is a function library, then

the SA has to implement the SAP entity, which calls the tested functions according the

instructions received from the TE.

Implementing an own specific SA for each SUT is unreasonable. In many cases a similar

access points with the SUT exists, or they can be implemented without great effort. An

SA implementation that knows how to use TCP/IP can be used with any SUT, that

understands how to receive and transmit messages over TCP/IP. An SA with a Frame

Relay implementation can communicate with a SUT with a Frame Relay access point. In

the case of testing library functions, a dedicated protocol can be used to instruct the

receiving entity at SUT-side of the connection to perform function calls or to receive

them.

These different SAs can be integrated into one super-SA, which provides their combined

functionality in one package. The benefit of this is that during a single test case it is

possible to establish connections with the SUT with more than one different

communication means, which gives the test case designer more freedom on what kind of

test cases can be written. To make the usage of all the different connection means easy to

the test case writer, the super-SA should provide a single uniform control interface for

them. To make further development of the super-SA feasible, its design has to be such

that one can add new connection means to the system without causing changes to any

existing TTCN-3 test case code. At the SA level it has to support registration of different

kinds of connection means into the system, without making any assumptions on how they

work internally.

Figure 4-1 shows a snapshot of a possible test configuration, in which the Implementation

Under Test (IUT) is a module having a network interface visible outside the SUT, and

internal procedure interfaces for communication with the other SUT-internal modules.

The super-SA contains functionality for establishing both network connections and

procedure connections at the same time. The network connection can be a TCP-socket

connection with the IUT module, with which the network-side behaviour of the IUT

 35

module is tested. In addition to this, the procedure connection can be used to verify that

the tested IUT module performs correctly with the SUT module, whose implementation a

test case component imitates. The test case could be such, that first a message is sent to

the IUT module via the network connection. As the result, the IUT calls a certain

interface function, whose call is observed via the procedure connection. In the test case, it

is then checked that the IUT called the right function with the right parameters, after

which a return value of the function is passed back to the IUT module via the procedure

connection, and the IUT can continue its execution.

4.2 Connection Manager System Concept

By using the Connection Manager System (CM System) introduced in this section, the

SA can maintain connections during test cases. The concept of the system is presented in

Figure 4-2. The CM System is a subsystem within the SA entity. The term SA is used in

this document to reference to that part of SA, which implements the TRI interface and

any other functionality that is not implemented by the CM System. The CM System

consists of a CM System Component, Connection Manager Classes (CM Classes), and

Connection Managers (CMs). Interfaces between the Test Case Component and the CM,

the SA and the CM System Component, the CM System Component and the CM Class,

and the SA and the CM entities are specified in Chapter 5 and in Appendix A. The greyed

out entities in the figure provide optional helper services, and their purpose is only briefly

discussed in this work. CM-prefix is omitted in the text when referencing to the class and

system entities, when this causes no ambiguity. The presentation in the figure is abstract,

meaning that in a real implementation each element can represent a class, but they do not

have to.

SUTSUTSUTSUTTETETETE SASASASA

Component with
network
counterpart
behaviour

Component with
SUT internal
counterpart
behaviour

Network
connection
means

Procedure
means

(Missing module)

Network interface

IUT module

Procedure
interface 1

Procedure
interface 2

Internal module

Figure 4-1: Two different connection means during a test case.

 36

The term connection has different meanings in this document depending on the context

where it is used. When the CM System Component is requested to open a communication

channel for a certain test case component by using some CM Class, and the system

component manages to pass the request to the chosen class, then from the behalf of the

CM System Component a connection has been opened. This does not necessarily mean

that a transmission protocol link has been established with the target. Each connection is

managed by a Connection Manager, which the test case component may instruct to open a

connection with a certain SUT point, or to accept connection requests from it. If the

transmission protocol used by the CM is invisible to the test case component, i.e. the

component receives the data payload only and no status information regarding the used

protocol, then the connection between it and the SUT as seen by the component is

present, whenever the component may assume it is valid to send to or expect a message

from the SUT. This is irrespective of the state of the transmission protocol, which is

handled by the Connection Manager. If applicable, the Connection Manager may open a

new connection between it and the SUT for each message, and this can be invisible to the

test case component.

SutSapSutSapSutSapSutSap

SASASASA
CCCCM M M M SystemSystemSystemSystem
ComponentComponentComponentComponent

uses and
controls

TETETETE

communicates with TRI operations

1

1

registed into

CCCCM M M M ClassClassClassClass
11 1..*1

0..*0..*

0..*

Test Case Test Case Test Case Test Case
ComponentComponentComponentComponent

contains

ConnectionConnectionConnectionConnection

communicates with

CMCMCMCM

1..*

1

1..*

1

provides and controls

11..*

maintains

0 .. *

1

TRI Message TRI Message TRI Message TRI Message
Detector SystemDetector SystemDetector SystemDetector System

TRI Message TRI Message TRI Message TRI Message

DetectorDetectorDetectorDetector

0 .. *

0 .. *

maintains a connection for / delivers all the received TRIMessages tocontrols

uses and
controls

Generic CodecGeneric CodecGeneric CodecGeneric Codec
for the CM for the CM for the CM for the CM
SystemSystemSystemSystem

CM Class Codec CM Class Codec CM Class Codec CM Class Codec
SystemSystemSystemSystem

uses to be able to handle
class specific types

uses to encode

CM configuration
messages can be a sub system

can be a sub system

Codec for a class Codec for a class Codec for a class Codec for a class
spesific typespesific typespesific typespesific type

provides TRI component and port information to uses

The services within

this greyed-out area
are optional

Figure 4-2: Relationships between the entities in the Connection Manager System concept in UML-

notation. Note: This is an abstract representation of the system; the class entities in a real implementation

can be different.

 37

The purpose of the Connection Manager is to take care of a connection during its

existence, starting from the establishment of the connection to its tear down procedures.

Once the connection has been opened, the Connection Manager handles all the details of

the protocol (or protocols) that forms the transmission means between a test case

component and the SUT. Every Connection Manager belongs to a certain CM Class, and

they can be seen as instances of the class or as entities controlled by the class. Each CM

Class provides certain kind of connection means, or other services, for test case

components, and they all offer the same interface to the CM System Component. The CM

System Component has an interface with the SA, which allows the classes to be

registered into the system, and via which the SA can use the services provided by the CM

System.

Test case writer configures the CMs via a Test System Interface port that has been

selected to be one of the control ports. All the messages the SA receives via the control

port are interpreted as control messages to the CM System Component. If a non-control

message is sent via the control port, it is considered as corrupted message by the

recipient. There can be more than one control ports in the system if this is applicable. In

addition to these CM System configuration ports, there can be dedicated ports for

configuring the SA itself, but that feature is outside the scope of this document. All the

other TSI ports are called data ports, since all the messages received from them contain

encoded data, that the SA delivers to the SUT by using the CM System.

When a component in the TE wants to send a message to a certain SUT address, or to

make a procedure operation, it executes a TTCN-3 communication statement (e.g. send ,

call) with the following results. The TE calls the TRI communication operation

(triSend() , triCall()) corresponding to the communication statement to request

the SA to perform according to the statement. Next, the SA constructs a request from the

parameters of the TRI communication operation, and passes it to the System Component

to be handled. The SA does not have to know anything about CMs, classes or their

configuration; it only sees the interface provided by the System Component. Once the SA

has passed the request to the system, it returns from the TRI operation call, without

having to wait for the request to be completed by the system. The System Component

passes the request to the right CM of the used CM Class, which finally transmits the

 38

message to the SUT end-point of the connection, or performs a procedure operation such

as function call. Depending on the implementation of the interface functions, the CM

System Component passes the message either directly, or via the CM Class, to the right

CM. The chain of events in sending and receiving direction is show in Figure 4-3.

In the receiving direction the events are simpler: The CM receives a message or

procedure operation from the SUT. After this it requests the TE to enqueue the message

or the procedure operation to the port queue of the right component by using a

triEnqueue * () operation of the TRI interface. These operations require as

parameters the identifier of the receiving component (TriComponentIdType) and

identifier of the TSI port (TriPortId) with which the component’s data port has been

mapped. The CM can query for this information from the SA.

Depending on the transmission protocol used by the CM, it is either trivial or not for the

CM to determine in message-based communication when the data received from the SUT

should be enqueued to a component. In the case each transport protocol PDU always

contains data for one test case level message, then the enqueueing is easy, since it can be

done after each received transport protocol PDU. If a single transport PDU may contain

several encoded TTCN-3 messages, or if the messages may arrive in several transport

PDUs, then message detection is needed. This is because the only form in which the CM

can pass the received data to the TE is the form of TriMessageType (Section 3.4

shows the operation signatures), which has to contain all the encoded data that is needed

by a decoder to decode a single value. It is not possible to pass data for several values

simultaneously, or to append more data to the already enqueued data. If the passed data

does not contain a single value in its encoded form, then its decoding will fail and the data

is lost.

TE SA CM System
Component

CM SUT SAP

Sending of a message

TE CM SUT SAP

Receipt of a message

CM Class

Figure 4-3: Send and receipt of a message.

 39

TRI Message Detector System is an optional system used by the connection managers to

identify messages and their boundaries from the receive data. A single TRI Message

Detector detects message boundaries by a certain general rule, which is either a generic

rule or specific to the messages that are expected be received from the SUT. The message

detectors are independent of the used transmission protocol; they only see a stream of

payload data. The detectors are registered into the TRI Message Detector System, which

offers a single interface via which the detectors can be used. The Connection Manager

may use one or more different detectors on the received data at the same time. The

detector system can be seen as a rough decoder system, which decodes the received data

just enough to be able to determine the message boundaries. The complete decoding is

done later by the TTCN-3 codec system. Further specification of TRI Message Detector

System is outside the scope of this document.

In the following example detection is needed. A Connection Manager uses a connection-

oriented protocol like TCP as the transmission protocol. It is wanted, that the connection

is kept open during the test case so that several TTCN-3 level messages can be exchanged

without having to re-establish the connection after every message. The encoded messages

contain length field as the first field, so the Connection Manager can use a TRI Message

Detector that decodes the length field and keeps track on the received byte count. When

enough data has been received for a complete test case level message (a value of a certain

TTCN-3 type), the detector notifies the Connection Manager about this. In order that the

Connection Manager knows to use a specific message detector, the test case writer has to

configure the CM to use it. This can be done for example at the time when the connection

is opened, by giving the CM a list of used detectors as open-request parameters.

CM Class Codec System is optional system, which can be used to implement generic

codecs for the CM System. The connections with the SUT are configured with CM

System Component specific configuration-message types, which in turn contain CM

Class specific types (5.2 Connection Interface). When a configuration message is sent to

or received from a CM, a codec associated with the configuration message is called, and

this codec should be able do the encoding and decoding of the whole message. The codec

could be a generic one, or there may be an own codec for each of the configuration-

message types. Because it is allowed that each CM Class may use any kind of class

 40

specific configuration parameters, the configuration messages contain these class specific

parameter values encoded in a class specific manner. Without a generic codec this is a

problem, for the reason that one should be able to add new CM Classes into the system

without the need to rewrite existing code. If new CM Classes were added into the system,

then in the case of a non-generic configuration-message codec one would have to rewrite

the codec to contain coding instructions for the types of the new classes. For a generic

codec approach the CM Class Codec System provides methods for the configuration-

message codecs to query for class specific codecs by type identifiers and by encoding

attributes, when they are unable to do the encoding on their own. The class specific

codecs can be registered into the CM Class Codec System at the same time when the

classes are registered into the CM System, or at some other time when the tool specific

initialization operations are done (if such exist).

4.3 Requirements

The CM System has requirements at TTCN-3 core language level, and at the SA

implementation language level.

At TTCN-3 core language level is the user, to whom the system should be easy to be used

and hard to be misused. The user should have access only to the configuration parameters

of connection, and not to any meta-data that is meant to be used internally by the system.

In addition to this, any configuration data should be kept separate from any user data,

meaning that when the user tests a certain protocol, the type definitions of this protocol

contain only the message fields of this protocol; there are no extra control fields added to

these type definitions. This allows (or forces) the CM System to deliver the user data

between test target and the test case components transparently, without the need to strip

away and add control data to every sent and received message. All the different

connection types should be configurable using the same methods, and it should be

possible to query status of the connections when required. Addition of new connection

means to the system should not affect the functionality of any existing test cases or other

connection means.

 41

At the SA level, the system should provide the possibility to add new transport protocols

into the system easily, without having to do major code modifications into the system.

The CM System may not assume anything about the implementation of the CM Classes.

The user (or test case) should be automatically reported about error situations, such as

when a connection with a target is lost, or the target cannot be reached.

In the terms of performance, the CM System implementation should be as light as

possible; it should only cause minor overhead to the TRI-operation handling. Concrete

performance requirements depend on what is being tested, and what kinds of transport

protocols are used.

4.3.1 Connections

In Figure 4-4, two test case components can be seen communicating with four SUT

addresses over three data connections. Component X has its data port Port 1 mapped to

TSI Port 1. This connection is handled by a connection manager CM A1, which belongs

to CM Class A. Connection Managers of this class use a protocol A to realize at the SUT

the test case statements, that are executed using the component ports. The same

component has another connection via Port 2 to another SUT address. This connection

belongs also to Class A, but it is handled by the manager A2, independently from the first

connection. Component Y uses a single port, Port 1, to communicate with two different

SATRI

CM System

CM Class A

CM Class B

CM A2

TE

System Component
TSI

Component Y

Component X

Port 1

Port 2

TSI Port 1

TSI Port 2

SUT

csiConnId routes

TriSutAddressType may route

Port 1 TSI Control Port

Control Port

Control Port

CSI

CCI

Protocol B

SAP 1

Protocol B
SAP 2

CM A1
Protocol A

Protocol A

SAP 1

Protocol A

SAP 2

Protocol B

CM B1

(csiClassId, cciCmId) pair routes

Data connection

Control connection

map-statement routes

Figure 4-4: Connections and identifiers.

 42

SUT SAPs. This is possible, because the Class B connection manager uses

sutAddresses to identify two different protocol-B destination addresses. Class B

CMs could be servers, which accept incoming connection requests and data from one or

more SUT addresses, which do not have to be known before the test case. This may be

the case when the protocol B is TCP or UDP, and the operating system of the SUT

assigns any free port addresses to the connections established from it. The protocols used

by the CMs do not have to be network protocols. They can be any methods, like function

calls, with which the CM realizes the intended effect of the TTCN-3 Core Language port

operations at the SUT.

In the same figure Port 2 of Component X and Port 1 of Component Y share the same TSI

port, but both communicate with the SUT over different protocols. It is possible to choose

the used CM Classes independently from the TSI port configuration. This means, that it is

not a prerequisite to have a TSI port of certain name or type specified in a test case to be

able to use a certain CM Class. The test case designer may choose to configure all the

TCP connections via the same “tcp”-titled TSI port, but this is not required by the system.

Every component mapped with a TSI data port has at least one control port, which is

mapped with a TSI control port. This control port of the component is used for

establishing and maintaining the data port connections of the component. The messages

sent by the component via the control port are received by a CM, and the messages the

component receives from it are sent by the CM, hence, there is a bi-directional control

connection between the component and the CM. A single control port can be used to

control several data connections, which are each handler by an own CM, as is the case

with Component X in the Figure 4-4. The CM System Component knows how to route

the control messages to the right CM.

The data port to be configured is identified by a value of type CiTsiPortId , which is

present in every configuration message that is passed between a component and a

connection manager (Section 5.2, Table 5-2, Figure 5-3, Figure 5-4). This value contains

the name of TSI port (text string), with which the data port of the component has been

mapped; it is not the name of the data port of the component. CiTsiPortId uniquely

determines the data port of the component, because according to the standard [T3CORE:

 43

s. 8.2] only one port of a component may be mapped with a certain TSI port at a time.

Also, when a message should be delivered to a certain port of a component with a

TTCN-3 Runtime Interface communication operation (Section 3.4), the port is identified

by the name of the TSI port, with which it has been mapped. The TE takes care of passing

of the message to the right port of the component.

Each component may only configure its own data connections. The reason for not

allowing one component to configure a connection via a port of another component is that

the components do not have names or identifiers, which could be used to address them

both at the TTCN-3 language level and at the SA implementation level. At the TTCN-3

language level a component does have component reference that can be stored into a

variable of the type of the component, and which can be used to address a component

within a test case, but this reference value cannot be passed to the CM System via the TRI

interface. This is for the reason that the TCI interface does not provide operations for

encoding and decoding of the values of the component reference kind.

The components may not share connections by simply mapping their own port with a TSI

port, which is already used by another component. If a component has configured a

connection of a certain kind via a certain TSI data port, and another component maps its

data port with the same TSI data port, this second component cannot send or receive

messages or procedure operations via the TSI data port, until the second component has

performed its own port configuration operations. When the SUT sends a message to the

TE via a TSI port, which has been mapped with several components, but only one of them

has configured the TSI port, then the received message is relayed only to the component

that has done the configuration. If they all want to receive messages via the TSI port, they

have to do their own configuration. This restriction comes from the design choice, that

each component may configure an own connection independently via any TSI port,

irrespective of any other possible connections that use the same TSI port. If it is required,

that several components mapped with the same TSI port share the same connection, then

this functionality has to be provided by the used CM Class. In this case, each of the

components may do the configuration by instructing the CM Class, that they want to join

a shared connection.

 44

The port of the component used for a data connection must be mapped with a TSI data

port, before the connection through it is attempted to be configured via a control port.

This is required to avoid the situation, in which data is received from the SUT right after

the connection has been opened, and it is directed to a component data port that has not

been mapped to a TSI port. This does not necessarily mean, that data is automatically

started to be received from the SUT when a new connection is opened. It depends on the

used CM Class and its configuration, whether a separate control messages exists, with

which one can instruct a CM to start and stop sending of the received data to the

component.

Once a component has mapped its control port to a TSI control port, and has configured a

connection for a data port, it should remain mapped to the control port for the lifetimes of

all those connections that are controlled via the control port. Because this requirement

cannot be enforced, the SA should instruct the CM System Component to terminate all

the existing connections the component has that are maintained via a control port, when

this control port is unmapped from the TSI control port. In Figure 4-4 this means, that if

Component X unmaps its control port, then the data connections via its ports 1 and 2

become automatically terminated.

When a component does not need anymore a data connection, it should instruct the CM of

the connection to close the data connection. Because this requirement cannot be enforced,

the SA should instruct the CM System Component to terminate the data connection, when

the related data port of the component is unmapped from the TSI data port.

The SA does not need to know which TSI port or ports are used for the control. The CM

System Component performs the identification of the ports on the behalf of the SA.

4.3.2 Identifiers

Each connection is handled by a Connection Manager, which belongs to a certain CM

Class. Every class has to provide at least one manager that can handle at least one

connection at the same time, but there can be several managers running concurrently

within the class, serving several simultaneous connections. It is a design choice of the

class how many connections the class supports at a time, and whether one manager

 45

handles them all. Seen from outside the class, each connection is always handled by an

own manager, which has a unique identifier within the class.

All the connection related operations the CM System Component provides to the SA use

an identifier called csiConnId . It can be extracted from the (TriComponentIdType

componentId , TriPortIdType tsiPortId)–pair, which is present in all the TRI

communication operations (Sections 3.4 and 3.5 describe these operation). This identifier

is used by the CM System Component to uniquely identify connections, thus all the CM

System Interface operation calls done with the same csiConnId as a parameter operate

on the same connection. It is worth noticing, that the componentId identifies a test

component, but the tsiPortId identifies a port of the test system interface component.

These types and their contents are shown in Figure 4-5. Types of the internal fields of

TriComponentIdType and TriPortIdType are not shown in the figure, since

these depend on the used language mapping (C, Java) of the TRI interface. The types

used within csiConnId are specified in Section A.1 CM System Interface.

The csiConnId identifier is now defined to be the triplet (componentInstString ,

portNameString , portIndex) (see Figure 4-5). The componentInstString

is the string stored in the componentInst field of TriComponentIdType

componentId in the ANSI C type definition of TRI language mapping. In Java

mapping, it is the value received with getComponenId() method of the

TriComponentId interface. portNameString and portIndex are the fields of

TriPortIdType tsiPortId .

Within the CM System Component, csiConnId is mapped to the identifier of the

Connection Manager, that is handling the related connection. This CM identifier is called

cciCmId , and it is unique within a CM Class. A CM Class identifier, csiClassId , is

CsiConnId csiConnId

String portNameString

CsiIntegerType portIndex

String componentInstString

TriPortIdType tsiPortId

...

TriComponentIdType compInst

portName

portIndex

TriComponentIdType componentId

compType

compInst

Figure 4-5: Structure of csiConnId .

 46

used together with the cciCmId to uniquely identify a CM between classes. The classes

are registered into the CM System Component with their unique csiClassId identifier,

whose value is the field name of the class in the TTCN-3 union type

Ci <OperationName >Params : E.g., a variable CiOpenParams class is a union

value, whose different field names could be .socket , .frameRelay , and .atm .

Each of these serves as the csiClassId identifier of the related class. This is explained

further in Section 5.2.2.

The TriAddress sutAddress value, which is present in the TRI communication

operations as one of the parameters, is not used in the csiConnId . The reason is that its

TTCN-3 core language level form, address value, is optionally present in the

communication operations. If it was used in the csiConnId , then it would have to be

either used, or not used at all, in all the core language level communication statements

(call , send) concerning a certain connection, because the CM System Component

maps the value of csiConnId to the identifier of CM that handles the connection

(explained later in 4.3.3 Information storage). Its usage would also complicate error

handling in the situation in which connections are closed improperly, because it is not

present in the triUnmap() operation (A.1.2 Operations: csiConnTerminate).

Nevertheless, the address value is always passed transparently by the CM System

Component to the CM Classes. Since the csiConnId is not dependent on the usage of

the address value, the address can be used for example only when a new connection is

opened, and it may be omitted in all the operations after that, if this is permitted by the

used CM Class. The CM handling the connection may use the address values to

address several elements within the SUT by using them as sub-connection identifiers.

4.3.3 Information storage

The CM System and the SA have to maintain information on the connections. It must be

know how components are mapped into Test System Interface, so that the system knows

where the received messages should be delivered to. In order for the CM System to know

what CM Classes are present in the system and how they can be accessed them, a class

register is needed. When data should be delivered to the SUT, it must be known to which

connection the data belongs, and what CM is handling the connection. For each

 47

connection, it must be known what is the SUT end-point address of the used transport

protocol, and what is the state of connection. One way to store the information is shown

in Figure 4-6, which is explained in the following paragraphs.

The SA maintains the mapping information of the Test System Interface (TSI). During

the triExecuteTestCase() operation it stores the port list of the interface and

removes the old one if such exists. In the triMap() and triUnmap() operations it

updates a register called tsiMap to contain the information which component port is

currently mapped with which TSI port. As the parameters of the triMap() , the SA

receives TriPortIdType compPortId , and TriPortIdType tsiPortId . From

the compPortId it extracts the identifier of the component, TriComponentId

componentId , from which a component identifier string can be extracted. From the

tsiPortId the SA extracts the portName and portIndex values. Together with the

component identifier string, the portName and portIndex form a csiConnId as

explained in Section 4.3.2. By using this csiConnId value as the key, the SA stores the

(TriComponentIdType componentId , TriPortIdType tsiPortId)–pair

into tsiMap . When a CM has to perform a triEnqueue*() operation (Chapter 3), it

queries the parameters of this operation from the tsiMap data structure by using a

csiConnId as the key. The relationship between the types is illustrated in Figure 4-7.

SA implementation language level (C, Java, other)

TTCN-3 core language level

CM Class
handlerMap
controlMap
cmClassReg

CM System Component

tsiMap

SA

CM

TE

Component
Component

Connection Interface (CI)

(TRI)

CM System Interface (CSI) CM Class Interface (CCI)

(Class internal interface)

Mapping Interface (MI)

Figure 4-6: Required interfaces and information storage in the CM System.

 48

The reason why the component and port identifiers are stored into the tsiMap which is

located in the SA, instead of passing own copies to the CMs that need them, is to keep

their values always valid. A copy of a (componentId , tsiPortId)–pair stored into a

CM would become invalid when the specified component unmaps its own port from the

specified TSI port. The standards leave it open what happens if a triEnqueue*()

operation is called with out-of-date values, thus the tsiMap is used to make the system

portable between different TTCN-3 tools. Its usage prevents the TE from altering

mapping information with the triMap() or triUnmap() operations, when a CM is

about to use a certain (componentId , tsiPortId) –pair to send a message or

procedure operation to a component. The usage of tsiMap is further specified in

Appendix A.3.

The CM System Component maintains a class register, cmClassReg , which contains

the information what CM Classes are available to the system, and how the CM Class

Interface functions implemented by them can be called. Each class can have their own

implementation of the CM Class Interface functions, but they all share the same interface.

In addition to the class register, the CM System Component contains a data structure

handlerMap , which is used by the CM System Component to pass all the

communication operation requests from the SA to the right CMs. This data structure

contains mappings from a csiConnId to the pair (csiClassId , cciCmId), in which

”Value””Key”

TriPortIdType tsiPortId

TriComponentIdType compInst

portName

portIndex

Instance string

Mapping data

TriComponentIdType compInst

TriPortIdType tsiPortId

CsiConnId csiConnId

portNameString

portIndex

componentInstString

TriPortIdType triCompPortId

TriComponentIdType compInst

portName

portIndex

Instance string

Parameters of triMap() and
triUnmap() operations.

Parameters of triSend(),
triCall(), etc.,and
triEnqeueue*() operations.

This key-value -pair is stored
into tsiMap .

Figure 4-7: The information stored in tsiMap data structure and the relationship between

CsiConnId , TriPortIdType , and TriComponentIdType .

 49

csiClassId is the class identifier of the CM, and cciCmId is the identifier of the

CM, that is handling the connection (see Figure 4-8). The cciCmIds are generated by

the CM Classes, when the CM System Component requests them to create new managers

to handle new connections. These identifiers are unique within a class. It would be

possible to place a mapping data structure similar to the handlerMap within each class,

but then each class would have to implement it, instead of having it done in one place.

Because of the requirement, that the data connections related to a control connection are

closed when the control connection is terminated, the CM System Component has to

maintain a data structure, which contains the information which data connections are

controlled by a certain control connection, and what is the control connection of a certain

data connection. This information is stored into the data structure called controlMap

(see Figure 4-8).

Each CM Class maintains identifiers of its CMs. When the CM System Component

passes an operation request along with a cciCmId identifier to a CM Class by using CM

Class Interface operations, the class knows from the identifier which CM should handle

the request.

Each CM maintains information on the connection it is handling. Either it knows the

csiConnId of the data connection it is handling and the identifier of the related control

connection, or it asks them from its class. The CM can use the csiConnId to ask from

tsiMap
(SA)

componentId,
tsiDataPortId

csiDataConnId

componentId,
tsiDataPortId

handlerMap
(CM Sys. Comp.)

csiClassId,
cciCmId

controlMap
(CM Sys. Comp.)

componentId,
tsiCtrlPortId

csiCtrlConnId

csiDataConnId

componentId,
tsiCtrlPortId

csiCtrlConnId

”csiNoConnId”

csiClassId,
cciCmId

csiClassId,
cciCmId

Data connections of a single component :

Control connection of a single component :

Stand-alone control connection of a single
component:

Figure 4-8: Relationship between the mapping data structures and the identifiers. Double-headed

arrow means that the mapping is in both directions.

 50

SA the related (componentId , tsiPortId)–pair, which is stored into tsiMap , when

it wants to send messages and procedure operations to a test case component with the

triEnqueue * () operations. When a new data connection is opened (related operations

are A.1.2: csiConnOpen , A.2.2: cciConnOpen), the csiConnId of the data

connection and its control connection are passed the CM Class, which in turn may pass

them to the CM.

The following summarizes the usage of the mapping data structures shown in Figure 4-8:

The tsiMap maps a csi*ConnId value to a (componentId , tsiPortId)–pair,

which is needed by the CM when it has to pass a message and procedure operation to a

test case component. When a csi*ConnId value identifies a control connection, then

the controlMap is used by the CM System Component to retrieve the identifiers of the

data connections, that are controlled by the control connection. The handlerMap is

used by the CM System Component to map a data connection identifier to the

(csiClassId , cciCmId)–pair, in order to find out which class and which particular

CM is handling the data connection. In the special case when a control connection does

not control any data connection, the identifier of the control connection is used directly

with the handlerMap . The CM System Component uses the csiClassId to find the

right interface functions from its cmClassReg (not shown in the figure), when it needs

to pass a connection related operation to CM of a certain class.

4.3.4 Concurrency

In TTCN-3 Runtime Interface [T3TRI: s. 4.3] it is specified, that all the TRI operations,

except the external function call, are non-blocking. With non-blocking it is meant, that

blocking during a TRI operation may not have any effect on the test system at the test

case level. The non-blocking requirement can be fulfilled by having separate worker

threads and a task queue, into which the TRI operations are enqueued.

To make the CM System independent of the concurrency model of the TE

implementation, and of the SA implementation, all the CM System Interface operations

belonging to the connection category (listed in A.1) must be non-blocking and thread-

safe. All the system and class category operations of CM System Interface are thread-safe

 51

but blocking. They are blocking because they are initialization and finalization related

operations. It is wanted that they do not return until their intended effect has been

completely performed, so that the state of the CM System can be guaranteed after these

operations.

4.3.5 Operation handling order

When a test case component performs a sending operation (send , call , etc.) on a port

that is mapped with a TSI port, this results in a corresponding TRI operation. In TTCN-3

Runtime Interface Standard [T3TRI] it is specified, that as the result of a TE-initiated TRI

communication operation, the SA can act according to the operation. It is not required

that the SUT has experienced the intended effect of the operation before the TRI

operation returns, thus the operation can be delayed by buffering it into a queue. How and

when the operations are handled is outside the scope of the standard. The CM System

provides the SA the means to handle the TRI operations. With operation handling order

it is meant the order in which the CM System Component, the CM Classes, and the CMs,

process the operation request the SA makes to the CM System. This order is not self-

evident; it depends on the interpretation of the test system interface, and on what is

wanted.

On interpretation of the test system interface

The test system interface is an abstract interface, which in some way provides a mapping

to the real interface(s) of the SUT. It is not specified where this abstract interface is

located. It can be though of being located at the SUT, or at the TE or SA, or somewhere

in between.

If it is assumed that the ports of the TSI reside at the SUT as illustrated in Case A of

Figure 4-9, and that a mapping between a component port and a TSI port works the same

way as a connection between two component ports, then it could be assumed that all the

port operations performed on a component port mapped with a TSI port are seen at the

TSI port in an unchanged order. It would be up to the SA or the CM System to make sure

the operations appear in order at a SAP of the SUT. Of course, one might argue that the

propagation of messages from a component port to a TSI port does not have the same

 52

meaning as when they move between two component ports, and it is subject to effects of

the used transmission means, but this would make it harder to write test cases in which

the order of events is guaranteed.

If it is assumed, that the TSI ports are at the SA as show in the Case B in Figure 4-9, do

the operations now have to be guaranteed to be experienced by the SUT in the same order

in which they are executed in a test case? The answer to this is not necessarily. If the

communication with the SUT can only be accomplished by using a connectionless

protocol like UDP, and the SUT has been designed and intended to communicate over

this unreliable protocol, it would not make sense to build such a mechanism into the SA,

CM System or the SUT, that ensures unchanged packet order during transmission. In this

case, the person who runs the test cases should ensure that the transmission network used

in the test system is simple enough not to introduce any changes to the packet order.

Because the situation B in Figure 4-9 gives more freedom on what kind of transmission

means can be used, that interpretation is chosen in this document. It does not mean that

the operation order is never preserved, but that it can be an optional feature of the used

CM Class.

Operation handling within the CM System Component

Because the test case components or ports have no execution priority, it is natural that all

the communication operation requests are handled by the CM System Component in the

first-come, first-served manner. The CM System entity does not have understanding on

SUT

SUT

Component

Transmission means
Component

Real test system interface

Abstract test system interface (TSI)

SAPTSI portPort

Transmission means

Real test system interface

Abstract test system interface (TSI)

SAPTSI portPort

B)

A)

Figure 4-9: Two interpretations of the location of the TSI.

 53

the parameters with which connections have been configured, thus they have no effect on

the handling order. When the SA has requested the CM System to perform connection

related operations by using the CM System Interface operations (A.1.2 Operations), the

CM System may choose to enqueue these operation requests into a list, or it may handle

the operations directly, but it may not change their relative order. With the handling it is

meant, that CM System Component passes the requests to the right CM Classes and CMs.

Operation handling within a CM Class

The CM System Component requests the CM Classes to perform connection related

operations by using the CM Class Interface (CCI) as specified in A.2.2 Operations. The

identifier of the CM that is handling the connection is present in these operations. The

order in which the CM Class forwards the operation request concerning a single

connection to a specific CM is the same as in which they have been requested to be done

by the CM System Component.

However, it is allowed that the relative order of operation requests that are directed to

different CMs (i.e. do not belong to the same connection) does not need to be preserved.

This is because a CM Class could provide priority parameters for the connections, and

since each connection is handled by an own CM, the priority of the connection is the

priority of the CM. Any requests directed to the CMs may be forwarded to them in a

manner, which takes the priority in account. This feature could be used in high-load

situations.

Operation handling between CM Classes

It is not required the classes to preserve handling order over the class boundaries. This is

to allow the classes to provide any kind of transport means to the user: slow or fast, with

or without guaranteed transmission order. If the classes did have a common

synchronization for preserving the operation handling order, this might cause problems

for example in the case, where the buffered operations of a slow connection class block

the usage of faster connection class, until all the operations have been handled.

 54

Some of the classes may provide mutual synchronization, but this should be an optional

user configurable feature, unless these classes are meant to be used together and their

functionality requires this.

Operation handling within a CM

Each CM preserves the relative order of the requests concerning a connection it is

handling, unless the optional address parameter of the TTCN-3 communication

statements is used by the CM as a sub-connection identifier.

If the SUT address is used by the CM to identify sub-connections, then it depends on the

used CM Class and configuration parameters of the connection in which order the

operation requests are handled.

With the handling within a CM it is meant, that the CM interacts with the SUT when the

requested operation requires this, but it does not say anything about the order in which the

SUT experiences the results of the operations. There is a possibility that the operations

become rearranged during transmission, if the transport protocol used by the CM does not

guarantee in-order transmission.

Operation handling between CMs of different classes

As it is not required to have synchronization between different CM Classes, it is not

required to have synchronization between the CMs of different classes.

An example situation where synchronization would be harmful is two connections, one

using a CM Class, which uses TCP as the transport protocol and is used for data, and

another one using UDP and is used for control messages for controlling the TCP data

connection. If the sending order of the messages was preserved between the classes, and

if the send buffer of the TCP connection becomes full, then no control messages via the

UDP connection can be sent until all the TCP data has been sent to the SUT. The situation

would be even worse if the two connections were unrelated. For example, there could be

one component using a UDP connection for completely other purpose than to control the

TCP connection. This other UDP connection might be used for some kind of heartbeat

protocol, which requires a transmission of a message at fixed intervals. It would not make

 55

sense if the sending problems with TCP data connection affected the UDP connection,

since their purposes are unrelated.

Operation order at test case level

When writing a test case, in which a component communicates with several targets over

several protocols, the test case writer has to choose and configure the used CM Classes

and CMs so that they do preserve the test case’s intended delivery order of messages and

procedure operations. This is not guaranteed by default and depends on the context and

the used CM Classes.

It should be noted, that when a CM passes a message or a procedure operation to a

component via some specific TSI port, lets say “Port A”, by using a TRI interface

triEnqueue*() operation, and then passes another message or procedure operation

via other TSI port “Port B”, the receiving component cannot automatically determine

which event occurred the first. The messages or the parameters of the procedure operation

needs to contain a timestamp or sequence number, with which the test case component

can reconstruct the order of events if this is needed, because TTCN-3 core language does

not provide means to determine or compare the order of events between two ports.

 56

5 INTERFACES
This chapter specifies the functionality of the following interfaces: Connection Interface

(CI), Mapping Interface (MI), CM System Interface (CSI), and CM Class Interface (CCI),

which are shown in Figure 4-6. Of these, the Connection Interface is specified in detail,

because it can be thought as TTCN-3 Core Language level user interface to the services

provided by the CM System, thus making it of interest to the test case writer.

Understanding it also helps in understanding what the other interfaces try to accomplish.

The Mapping Interface, CM System Interface, and CM Class Interface are “under the

hood” at SUT Adapter level, so only an overview of them is given in this chapter. These

interfaces are used for keeping TSI port information consistent (tsiMap), for registering

new CM Classes into the system, and for using their services to communicate with the

SUT. Their detailed description can be found in Appendix A. Selected MSC diagrams

showing how the operations of the interfaces work together can be found in Appendix B.

5.1 Notation

All the interface operation in this chapter and in Appendix A are specified using the

following format:

Operation identifier (Caller or Sender ���� Callee or Recipient)

In: The parameters passed from the caller to the callee.

Out: The parameters passed from the callee to the caller.

Return: Return value of the operation.

Purpose: Description what the operation is used for.

When: Description when the operation is performed and what triggers it.

The parameters and return values are in format:

TypeIdentifier variableIdentifier

Operation has no mandatory parameters or return value if the corresponding part has

been omitted in the text.

 57

The operations and data types are specified at an abstract level. It is not required that

every operation exist in an actual implementation, which may be done in C or Java

language. The operations describe what needs to be done, and the in part and out part

describe the mandatory information that is passed between the caller and the callee in the

operations. It is not considered how the parameters are passed, when memory is allocated

and freed, or what is the representation format of the types in an actual implementation.

The language mappings from the abstract operations and data types to C or Java are not

defined in this work.

An example situation in which the implementation does not need to follow the abstract

definitions is the csiConnDecodeOp() of CM System Interface. This operation is

called by the SA to determine which CM System Interface operation it should use to

handle a triSend() operation call. It is possible to replace all the connection category

operations (excluding csiConnTerminate) with a single operation, which performs

the action of csiConnDecodeOp() and then calls the right operation directly, instead

of returning the identifier of the right operation to the SA, and having it call the right

operation. This would make the interface simpler for the SA, but it would unnecessarily

complicate the specification of the different steps that need to be done.

5.2 Connection Interface

Connection Interface contains the operations needed to configure connections between

component ports and the SUT (control operations), and for using them for communication

(data operations). All the control operations are realized with the message-based send

and receive statements, with a particular TTCN-3 type as the parameter. The data

operations consist of all the TTCN-3 port operations that are used for communication

with the SUT via a data port (send , call , reply , raise). All the operations of the

Connection Interface are listed in Table 5-1.

5.2.1 On design choices

One reason for defining the Connection Interface control operations as message-based,

instead of using procedure statements, is the simpler syntax of the message statements at

the TTCN-3 core language level, and simpler parameters at the TRI interface.

 58

Another reason for using message ports is the semantics of the procedure port statements.

In a test case, when a procedure is called with the port operation call , it is expected that

at some point of time the procedure returns, and that is handled with a getreply

statement. Similarly, after the receipt of a procedure call with the getcall statement,

the test case should contain a matching reply statement. The procedure port operations

can therefore been see as request-response pairs, with a dedicated pair of operations

depending on which side performs the procedure call. Because of this, if the procedure

ports were used, then the Connection Interface operations should also be used in a paired

manner. However, it is useful to allow the connection managers to send information

concerning connections without explicitly requesting for it, or without responding to it.

For instance, when a CM notices that the connection it is handling is closed by the SUT

or by a transmission error, it may notify the test case component related to the connection

with the message-based ciClosed() operation. This operation is not a reply or an

acknowledgement to any action performed by the component, and the component does

not need an acknowledgement to it.

There exist a few reasons why the procedure-based approach could be preferred to the

message-based approach, even though this approach is not taken in this work. If an own

TTCN-3 signature (i.e., function declaration) is specified for each of the CI operations,

then the identifier of the signature can be used to identify the CI operation. This identifier

is passed over the TRI interface separately from the parameters of the function, and it

does not go through any kind of encoding or decoding, unlike the parameter values

(Section 3.5 describes TRI interface operations). In the message-based approach there has

Table 5-1: Operations at Connection Interface.

Category: Direction: Operation identifier:

Component � CM ciOpen

Component � CM ciControl

Component � CM ciClose

CM � Component ciOpened

CM � Component ciStatus

Control

CM � Component ciClosed

Component � CM ciData Data

CM � Component ciDataInd

 59

to be a separate operation identifier field in the transfer syntax of the messages (specified

in Section 5.2.3), which has to be decoded and extracted by the recipient. This work could

be avoided by using the procedure-based approach. In the procedure-based approach it is

easier to access the different function parameter values, since they can be read from the

parameter list. In the message-based approach they are concatenated as sequence of bytes

and the recipient has to figure out when one parameter value ends and the next one starts.

However, the overhead in the message-based approach is minimal, because of the few

number of parameters. In the procedure-based approach the decoding of the parameters is

slightly easier, since the TE knows to call the right decoders directly, meaning the

decoders assigned to the parameter types. In the message-based approach, the TE has to

attempt to decode from the received data a value of any of the types, that can be received

from the used port, and which are being expected by the component. For example, if a

component expects in an alt statement either a ciOpened or a ciClosed message,

and a ciClosed message is sent by the CM, then a decoding attempt is possibly first

made for the ciOpened type, and when this fails, a second successful attempt is made

for the ciClosed type. These unsuccessful decoding attempts have no real effect on the

performance though, since a CI operation decoder can decide from the first decoded bytes

of the received data which CI operation is in question (5.2.3: Table 5-3), thus it can tell

immediately without further decoding whether the decoding will be successful or not.

Instead of doing the configuration via dedicated control ports with messages or procedure

calls, one might consider using action statements or external function call

statements. The problem with the action statements is that information can only be

passed in the direction of from the test case to the SA. Hence, the receipt of any

acknowledgements or status reports from the SA has to be implemented in some other

way. In addition to this, the next version of the TTCN-3 standard possibly allows only the

passing of textual data with the action statement; it is not possible to pass a value or a

template with this mechanism any more [T3MOCKUP: s. 26]. By using the external

function calls it is possible to return information back to the test case, but the problem is

that the resulting triExternalFunction() call is blocking; it will not return until

the invoked external function has returned. If the TE is implemented with a single

execution thread, then the whole test system becomes blocked for the duration the of

 60

connection establishment with the SUT, if the ciOpen() operation is implemented as an

external function call. The ciOpened() operation would in this case be implemented as

the return value or out-parameter of the external function. Depending on the used CM

Class, it may take some time before the connection has been opened and the

triExternalFunction() can return. This time may be long enough to affect the

behaviour or the result of the test case that is being executed, which should not happen.

5.2.2 Type definitions

The TTCN-3 type definitions specified in the end of this section (Figure 5-3) are used to

define the Connection Interface operations. Their encoding and encoding attributes are

discussed in the Section 5.2.3, and their usage is explained in the Section 5.2.4.

Connection Interface operation message types can be defined in several ways in TTCN-3

Core Language. The following aspects need to be considered when deciding what kind of

type definitions will be used for the Connection Interface operation message types, and

for the CM Class specific parameter-type definitions.

Firstly, the information content of the Connection Interface operation messages go

through two or three different representation formats when they are used. In a test case,

the Connection Interface operation messages are defined and used in some TTCN-3 core

language representation format. When the messages are sent, the CM System Component

receives them in an encoded form, since all messages that are sent via a TSI port are

encoded by the codec system. Before the CM System Component can use the received

message, it may have to decode it to a more suitable internal format.

Secondly, there are two kinds of information present in the operation messages. The first

kind is the information that is used to control the connections and which the test case

writer can set. This information comprises the connection establishment parameters, SUT

addresses, and so on. The second kind of information is the meta-data needed by the CM

System to be able to handle the operation messages. This consists of message identifiers,

type identifiers, class identifiers, data length values, and so on, which should be of no

concern to the test case writer.

 61

If the types are defined in a way, in which the data is structured in TTCN-3 language

form close to how it is structured in the format in which it is to be sent to the CM System,

the encoding and decoding of the data becomes easier. An example of this is shown in

Figure 5-1. A TTCN-3 record, which contains IP addresses and port numbers for both the

TE and the SUT, is supposed to be encoded into a consecutive string of bits. If the IP

addresses and port addresses are separated into two different records, like in HeaderA ,

and the transfer syntax is such as shown in the figure, then the encoding becomes more

difficult. Either the codec has to encode the two internal records simultaneously to be able

to encode the information consecutively, or it encodes one record first and leaves empty

space holder in the encoded bit string, and fills in this space later while processing the

second record. Why this kind of situation could be wanted to be avoided is that there

could be a generic codec that is designed to encode any record type. One could call it

recursively to process nested records, but it would be difficult to encode the HeaderA

with it because of the used transfer syntax.

If the types are defined in the way the data is used by the CM System, the data handling

becomes easier to the CM System, but to the test case writer the system might become

harder to use, since the use might need to have internal understanding on the

implementation of the used transport protocols and the CM System. For example, it

would be convenient for a CM Class providing connections over Unix Sockets, if the

received control data contained: a filled in struct sockaddr value to be used with

connect() function, an address family value, a socket type value, and a protocol

type record HeaderA

type record IpAddrs

Source IP

Destination IP

type record PortAddrs

Source Port

Destination Port

type record HeaderB

Source IP

Source Port

Destination IP

Destination Port

Source IP

Source Port

Destination IP

Destination Port

Transfer syntax:

TTCN-3 type definition: TTCN-3 type definition:

1.

2.

3.

4.

Figure 5-1: Two different type definitions for the same data.

 62

specifier value to be used with socket() function [UNIX: ch. 4]. However, for a user

with no knowledge on socket programming the usage of these parameters would be

difficult.

A user friendlier approach is to define types in such a way, that they give a higher-level

abstraction of what is provided, without the possibility to unintentionally set illegal

parameter combinations, or to change the values of the meta-data used by the CM

System. The values used within the implementation of the CM System can be derived

from higher-level parameters by combining them with extra information, which is stored

in the form of type definitions and the type attributes of the control messages. This

approach is used with the types defined at the Connection Interface. At the encoding

phase the codecs can add the extra information to the to-be-sent data based on the type

identifiers, type classes and type attributes. The type classes are defined in [T3TCI: s.

7.2.2.1], and they specify the base or root type of any user specified type: e.g. integer,

record, set of, and so on. At the decoding phase, the codecs can use the extra information

within the received data to build the right TTCN-3 types.

In the case of a CM Class providing connections over Unix Sockets, the type definitions

for its connection-parameter types could be as outlined in Figure 5-2. By using the type

definitions shown in the figure, the test case writer can only define a valid set of

properties for a connection because of how the information has been grouped and

structured. For example, it is not possible to mistakenly define a TCP connection with

options from the UDP class, or to require that the local port uses TCP but the destination

port uses the UDP protocol. When encoding the values into transfer syntax form, the

encoder is responsible for adding the information which alternative of a union is present

in the data.

 63

module CmSocket
{
 type union Open
 {
 SockUdp udp,
 SockTcp tcp,
 SockRaw raw,
 SockDomain unix
 }

 type record SockTcp
 {
 IpPeerRec addr,
 UdpOptions opt
 }

 type record SockUdp
 {
 IpPeerRec addr,
 TcpOptions opt
 }

 type record IpPeerRec
 {
 PortAddr localPort,
 PortAddr remotePort,
 IpAddr localIp,
 IpAddr remoteIp
 }

 type union IpAddr
 {
 IpV4Addr ipv4,
 IpV6Addr ipv6
 }

 type charstring IpV6Addr;
 type charstring IpV4Addr;
 type charstring PortAddr length (1 .. 5);

 type record UdpOptions { /* ... */ }
 type record TcpOptions { /* ... */ }
 ...
} with
{
 encode (Socket, IpAddr) "UnionAltEncoder";
 encode (IpV6Addr, IpV4Addr) "CStringEncoder";
 encode (SockUdp, SockTcp, UdpOptions, TcpOptions , IpPeerRec) "RecursiveEncoder";
 ...
}

Figure 5-2: Socket Class example.

The Connection Interface type definitions along with their descriptions are listed in Table

5-2. The corresponding TTCN-3 type definitions are shown in Figure 5-3, Figure 5-4, and

Figure 5-5.

 64

Table 5-2: Connection Interface type definitions.

Type Identifier: Description:

CiOpen ciOpen() operation is performed, when a value of this record type is sent

by a component via its control port to a CM. It contains fields of type

CiTsiPortId (optional) and CiOpenParams (mandatory).

CiOpened ciOpened() operation is performed, when a value of this record type is

sent by a CM to a component via its control port. This type contains fields

of type CiTsiPortId (optional) and CiOpenedParams (mandatory).

CiClose ciClose() operation is performed, when a value of this record type is

sent by a component via its control port to a CM. It contains fields of type

CiTsiPortId (optional) and CiCloseParams (mandatory).

CiClosed ciClosed() operation is performed, when a value of this record type is

sent by a CM to a component via its control port. This type contains fields

of type CiTsiPortId (optional) and CiClosedParams (mandatory).

CiControl ciControl() operation is performed, when a value of this record type is

sent by a component via its control port to a CM. It contains fields of type

CiTsiPortId (optional) and CiCloseParams (mandatory).

CiStatus ciStatus() operation is performed, when a value of this record type is

sent by a CM to a component via its control port. This type contains fields

of type CiTsiPortId (optional) and CiStatusParams (mandatory).

CiTsiPortId A value of this record type is used to identify a TSI port. It contains fields

CiTsiPortName (mandatory) and CiTsiPortIndex (optional).

CiTsiPortName Subtype of TTCN-3 charstring type. A value of this type is used to

identify a TSI port (array) by its name. The TSI port (array) name is one of

the port identifiers of the component that is being used as the system

component.

CiTsiPortIndex Subtype of TTCN-3 integer type. A value of this type is used to

identify a particular port in a port array that is identified with the field

CiTsiPortName name of CiTsiPortId type. The special value omit

of denotes that CiTsiPortName refers to a single port instead of a port

array. Any other non-negative refers to an element of the array. The omit

value is encoded as –1 (see Table 5-3), which is in line with Java and C

language mappings of the type TriPortIdType [T3TRI: ss. 6.3.2.1 and

7.2.1].

 65

Table 5-2: Connection Interface type definitions.

Type Identifier: Description:

CiOpenParams This union of CM Class specific types contains parameters for opening a

new connection. For example, it can contain peer addresses for the used

connection protocol, buffer sizes, and so on. The field names of the union

are used as the identifiers of the CM Classes at CM System Interface.

CiOpenedParams This union of CM Class specific types contains parameters for an opened

connection. A CM Class can use this type to return information about the

opened connection to the test case. The field names of the union are used as

the identifiers of the CM Classes at CM System Interface.

CiCloseParams This union of CM Class specific types contains parameter for closing a

connection. For example, it may contain information about what should be

done with any possibly buffered data, or with the data that is possibly

received from the SUT after it has been instructed to close the connection.

The field names of the union are used as the identifiers of the CM Classes

at CM System Interface.

CiClosedParams This is a union of CM Class specific types with which the CM can return

any information about the connection that was closed. For example, it may

contain a status report telling whether the connection was closed cleanly or

if there were any problems. The field names of the union are used as the

identifiers of the CM Classes at CM System Interface.

CiControlParams This union of CM Class specific types can be used to implement any CM

Class specific extra functionality that involves sending a message to the

CM Class or CM. For example, parameters of opened connections can be

modified with this type. The field names of the union are used as the

identifiers of the CM Classes at CM System Interface.

CiCfgPort This port type is used to define Connection Interface control ports.

CiStatusParams This union of CM Class specific types can be used to implement any CM

Class specific extra functionality that involves sending a message from a

CM Class or CM to a test case component. For example, this can contain a

status report of a connection that has been established with the SUT. The

field names of the union are used as the identifiers of the CM Classes at

CM System Interface.

(continued from the previous page)

 66

Every operation type in Figure 5-3 is a record with two fields: port record

tsiDataPortId and class-parameter union class . The tsiDataPortId field

identifies the test system interface data port that is the target of the operation (and at the

same time a component data port). This value is optional and may be omitted, which can

be useful in controlling server-like CMs without having a data connection with it

(explained further in 5.4.7 TCP server example). The class-parameter union class is a

union of class specific parameter types used in the operation. It also selects the used CM

Class. If a class does not want to use parameters in a CI operation, (e.g. in

ciOpened()), this can be done by defining the type of the class specific parameter

value (ciOpened.class.udp) as an empty record. The parameter type may be

different in each of the CI operations, but it can also be the same (i.e., one set of

parameters for opening a connection – another set for closing it, or the same set of

parameters for both operations). The encode attribute strings will be explained in

Section 5.2.3.

group ciOperations
{
 type record CiOpen
 {
 CiTsiPort tsiDataPort optional,
 CiOpenParams class
 }

 type record CiOpened
 {
 CiTsiPort tsiDataPort optional,
 CiOpenedParams class
 }

 type record CiControl
 {
 CiTsiPort tsiDataPort optional,
 CiControlParams class
 }

 type record CiStatus
 {
 CiTsiPort tsiDataPort optional,
 CiStatusParams class
 }

 type record CiClose
 {
 CiTsiPort tsiDataPort optional,
 CiCloseParams class
 }

 type record CiClosed
 {
 CiTsiPort tsiDataPort optional,
 CiClosedParams class
 }
} with
{
 encode "CiOperation";
}

Figure 5-3: Connection Interface control operation types in TTCN-3 Core Language.

 67

Figure 5-4 contains example type definitions of the class unions of ciOpen ,

ciOpened , ciClose and ciClosed operation messages, and the definition of the

control port. Selecting a union alternative of Ci<OperationName>Params

determines the used CM Class. The union alternative identifiers (socket ,

frameRelay) identify the classes at the CM System Interface. The TTCN-3 type

identifiers of the alternatives are irrelevant to the CM System (CmSocket.Open ,

CmFrameRelay.Open), making it possible to rename the modules and types used by

the classes without affecting the CM System.

Each component may only configure its own ports; therefore, no component identifier

field is present in the operation messages. All the Connection Interface control operations

are performed via ports of type CiCfgPort , the TTCN-3 definition of which is given in

 group ciFieldTypes
 {
 type charstring CiTsiPortName length (1 .. infinity);
 type integer CiTsiPortIndex (0 .. infini ty);

 type record CiTsiPort
 {
 CiTsiPortName name,
 CiTsiPortIndex index optional
 }

 type union CiOpenParams
 {
 CmSocket.Open socket,
 CmFrameRelay.Open frameRelay,
 CmLangCModuleTest.Open langCModTest,
 CmLangJavaModuleTest.Open langJavaModTest
 ...
 }

 type union CiOpenedParams
 {
 CmSocket.Opened socket,
 ...
 }

 type union CiCloseParams
 {
 CmSocket.Close socket,
 ...
 }

 type union CiClosedParams
 {
 CmSystem.Closed sys, //See Section 5.3 Error Handling
 CmSocket.Closed socket,
 ...
 }
 ...
 }
 with
 {
 encode (CiOpenParams, CiOpenedParams, CiClose Params, CiClosedParams,
 CiControlParams, CiStatusParams)
 "CiOperationParams";
 encode (CiTsiPort)
 "CiTsiPort";
 }

Figure 5-4: Field types of the Connection Interface operation-message types.

 68

Figure 5-5. The Connection Interface data operations are performed via any other user-

defined port types.

5.2.3 On transfer syntax and encoding

Because all the CI operations are implemented as TTCN-3 types, the test case initiated CI

operations are seen at TRI interface as triSend() calls, where all the CI operation

information is encoded within the TriMessageType sendMessage parameter of

the TRI operation. Similarly, every CM or CM Class initiated CI operation is seen by the

decoders of the codec system of the TE as a string of bytes within the

receivedMessage parameter of the triEnqueueMsg() operation. Table 5-3

defines abstract transfer syntax for the CI operations, in which the operations are passed

between the test case components and the CM System. The actual encoding of the fields

depends on the implementation language. The endianness of the computer in which CM

System is being executed may also affect the encoding, unless it is decided that all the

values are always encoded in network byte order.

The CI operation messages in the format of Table 5-3 are referred to being in format

CmSysControlMessage . All the fields are interpreted as a consecutive sequence of

bytes. The position column tells the relative order of the fields, which may be stored into

one or more bytes each. When needed in encoding and decoding, the total length of the

CmSysControlMessage can be retrieved from sendMessage and

receivedMessage , within which the codecs of the TE and the CM System receive the

messages.

 type port CiCfgPort message
 {
 // To the CM System:
 out CiOpen;
 out CiControl;
 out CiClose;

 // From the CM System:
 in CiOpened;
 in CiStatus;
 in CiClosed;
 }

Figure 5-5: Connection Interface port types in TTCN-3 Core Language.

 69

Table 5-3: Connection Interface transfer syntax.

CmSysControlMessage

Pos. Field name Description

1

CiOperationId

Fixed width value that is used by the codecs of the TE and the CM System

Component to identify the CI operation in question. The encoder that

handles the CI operation type, or types, derives the right value based on the

type identifier of the value that is being encoded, i.e. CiOpen, CiClose,

CiStatus, etc. The value is encoded in the same representation format as the

CsiCiOpIdType (Table A-2) has in the implementation of the CM

System.

2

TsiPortNameLen Fixed width value that tells the number of bytes used for the

TsiPortName field. The value is encoded in the same representation

format as the CsiIntegerType (Table A-2) has in the implementation of

the CM System. This value is 0, when the tsiDataPort field has been omitted

in CI operation message.

3

TsiPortName Variable width value that contains the name of the target port of the

operation (value of tsiDataPort.name). The value is encoded as a

sequence of values of type CsiCharacterType (Table A-2) of length

TsiPortNameLen , in which each CsiCharacterType is in the

representation format used by the CM System. This value is not present

when TsiPortNameLen is 0.

4

TsiPortIndex Fixed width value that identifies the target port index of the operation (value

of tsiDataPort.index). The value is encoded in the same

representation format as the CsiIntegerType has in the implementation

of the CM System. This value is -1, when the tsiDataPort.index has

been omitted in the CI control message.

5

ClassIdLen Fixed width value that tells the number of bytes used for the ClassId

field. The value is encoded in the same representation format as the

CsiIntegerType has in the implementation of the CM System.

 70

Table 5-3: Connection Interface transfer syntax.

Pos. Field name Description

6

ClassId Variable width value, which identifies the CM Class that handles the CI

operation. The codec that handles encoding of the class field of the CI

operation messages derives this value from the field name of the currently

selected union alternative, for example class.socket . TCI-CD

operation TString getPresentVariantName() [T3TCI:s.

7.2.2.2.15] can be used to determine the field name. The value is encoded

as a sequence of values of type CsiCharacterType of length

ClassIdLen , in which each CsiCharacterType is in the

representation format used by the CM System.

7

ClassDataLen This fixed width value contains the length of ClassData field. The value

is encoded in the same representation format as the CsiIntegerType has

in the implementation of the CM System.

8

ClassData This value contains the value of the selected union alternative encoded in a

class specific format, e.g. class.socket . It is encoded as a byte

sequence of length ClassDataLen .

When the CM System implementation language is C and fixed-length fields are used, it

might be a tempting idea to do the encoding and decoding by type casting. Because the

CmSysControlMessage uses variable length fields, this kind of decoding cannot be

used for the whole CmSysControlMessage . However, for the class specific data part

this could be done in the following way.

To encode a structured value, one could fill in a corresponding C-struct with the right

values, and then interpret the structure as a sequence of bytes by giving a char pointer to

it. Care must be taken when decoding the data back into the C-struct type because of the

data type alignment used by the processors. When a codec encodes a TTCN-3 value into a

sequence of bytes to be transmitted over TSI, a pointer value to this byte sequence gets

stored into a TriMessage sendMessage (or into receivedMessage in the case of

decoding of a value). When the sendMessage passes through the TRI interface, there is

no guarantee by the TTCN-3 standards that the pointer value within sendMessage is

the same as the one set by the codecs; it could point at a copy of the data, which may be

differently aligned in memory than the original data. Thus, simply type casting the data

and reading the fields may cause hardware exception in certain environments because of

(continued from the previous page)

 71

the misaligned data. Therefore, the data in the sendMessage should be copied into a

new memory location with the same byte alignment as the type has, i.e. into a value of the

type, before accessing the fields within the data. The compiled CM System and the

codecs need also to have a common understanding about any possible padding in the

structures and ordering of the fields, which may depend on the compilation parameters.

Because of these problems, it is safer to do the encoding and decoding one field at a time.

There are no standardized methods with which one could gain access to a codec, but it

would be very useful to be able to call a codec from another codec. Some TTCN-3 tools

provide their own methods with which the codecs can be queried and called, but using

these makes the codecs tool dependent. If the tool does not provide these operations, then

the root codec of a structured type has to know how to encode the whole structure from

top down to its atomic nodes. For example, if one has written type definitions with

encoding rules for a PDU of a protocol and codecs for it, and later on would want to

encapsulate this PDU within a PDU of another protocol, then it would be nice if the codec

of the outer PDU could call the codec of the inner PDU to do its encoding. Otherwise, the

outer PDU codec has to re-implement the codec of the inner PDU.

If the tool does not provide its own methods for accessing codecs from codecs, or if the

encoding is wanted to be as tool independent as possible, it might be worth implementing

an own codec system, which provides methods for registering codecs into it by type

identifiers, type classes, encoding attributes, or by other identifiers. To use this codec

system, a single relay codec is needed, which implements the TCI-CD interface’s

encode() and decode() operations. This relay codec could be registered to the used

TTCN-3 tool as the codec for all the types, type classes, or encoding attributes (depends

on the used tool how this can be done), so it will always be called when a value should be

encoded or decoded. The relay codec gets the right codec from the codec system by

querying it with the encoding attributes of the value. The Generic Codec in Figure 4-2 is

this relay codec, and CM Class Codec System can be seen as the codec system, which

provides the methods for querying and calling the codecs needed to do the encoding and

decoding of their types.

 72

As of writing this document, the TTCN-3 Control Interface standard [T3TCI] does not

provide operations with which a decoder could ask for the types of the alternatives of a

union type, or attributes of the union alternatives. This makes it hard to write a generic

union type decoder, because a union decoder has to contain hard-coded information about

the types of the alternatives to know how it should process each field. A decoder of a

Ci<OperationName>Params union type has to be updated after addition of a new

CM Class to make it aware of the new union alternative type. This conflicts with the idea,

that one should be able to add new CM Classes to the system without having to modify

the program code of the existing encoder and decoders. Some of the TTCN-3 tools do

provide the type information for union fields, either by tool specific extra operations, or

by slightly changing the definitions of some of the TCI operations. The drawback in using

these non-standard methods is that the decoder code cannot be used with more than one

tool without changes. To avoid this, the CM Class Codec System of Figure 4-2 can be

used in implementing a generic union decoder for Ci<OperationName>Params

type in a tool independent way. Because the union alternative names can be always

retrieved from union type (TCI provides an operation for this), and in the case of

Ci<OperationName>Params type they serve as the CM Class identifiers, the union

decoder can ask from the CM Class Codec System what is the codec for a certain CM

Class by using “<cmClassId><operationName>” as the key. This of course requires that

when the CM Classes are registered into the CM System, the class specific codecs are

registered into the CM Class Codec System as well.

The attributes in Table 5-4 are used with the TTCN-3 type definitions of the CI interface

(Figure 5-3, Figure 5-4) to select the codecs, which do the encoding between the CI

interface types and the CmSysControlMessage format of Table 5-3. If the used

TTCN-3 tool does not support attributes, then the codecs can be selected based on the

TTCN-3 type identifiers.

 73

5.2.4 Operations

All the operations, except ciData and ciDataInd , are performed by sending or

receiving a value of TTCN-3 type via control ports. The ciData and the ciDataInd

operations are performed via data ports.

Table 5-4: Connection Interface type encoding-attributes.

Attribute: Value: Description:

Encode CiOperation This attribute selects the base codec for the all the CI-operation

types. Its responsibility is to encode and decode the value of

OperationId field of CmSysControlMessage based on

the type of the CI operation message being coded (CiOpen ,

CiOpened , CiControl , etc.). It shall also call the codecs of

the CI-operation message fields CiTsiPort

tsiDataPort , Ci<OperationName>Params class .

Encode CiTsiPort This attribute selects the codec, which handles the encoding

and decoding between the CiTsiPort tsiDataPort field

of the CI operations messages and the fields

TsiPortNameLen , TsiPortName , and TsiPortIndex

of CmSysControlMessage .

Encode CiOperationParams This attribute selects the codec, which handles the encoding

and decoding between Ci<OperationName>Params

class field of the CI operation messages and the fields

ClassIdLen and ClassId of the transfer syntax. The

value of ClassId is the identifier of the selected union

alternative of class . The advantage of using the alternative

name as the identifier is that codec does not need to have built-

in information about the identifiers, thus new classes can be

added without changing the code of this codec. The codec calls

the right class specific codec based on the ClassId , and the

called codec then encodes and decodes the selected union

alternative of into and from the fields ClassDataLen and

ClassData of the CmSysControlMessage .

 74

ciOpen (Component ���� CM)

In: CiOpen open_s

Message of type CiOpen . See Table 5-2 for its contents.

Purpose: With this operation a component can request the CM System to open a new

data connection between a component data port and the SUT, by sending a

message of type CiOpen via its control port. The message specifies the TSI

data port via which the connection is to be opened, the CM Class to be used to

handle the connection, and any class specific parameters.

 When the connection has been opened, the component receives via its control

port an acknowledgement in the form of ciOpened message. If the

connection cannot be opened for some reason, the component receives a

ciClosed message. No other CI operation addressing the same TSI data

port may be performed by the component, until an acknowledgement for this

operation has been received; other components may try to configure the same

TSI data port for their use, and the same component may try to configure

other TSI data ports while waiting for the acknowledgement.

When: After the component has its control port mapped with TSI control port, and

the data port of the connection has been mapped with a TSI data port.

ciOpened (CM ���� Component)

In: CiOpened opened_r

 Message of type CiOpened . See Table 5-2 for its contents.

Purpose: This operation is confirmation to the ciOpen() operation, and it consists of

a CM sending CiOpened message to component in the encoded form (

CmSysControlMessage , Table 5-3), and of the receipt of this message by

the component with the receive port-statement. The CM can construct the

encoded message with the help of CM Class Interface operation

cciEncodeCiCtrlOp() (A.2.2). The message contains the information

which TSI data port and which CM Class is in question, hence the receiving

 75

component knows which ciOpen message this acknowledges. The

ciOpened contains also any class specific parameters concerning the

opened connection.

When the component has received the ciOpened message, it may start using

the configured data port to communicate with the SUT. It depends on the used

CM Class and the parameters of the ciOpen() request, whether the

connection is ready for sending, receiving, or for the both.

This operation is always a response to the ciOpen() operation. It cannot be

used for example to notify a test case component about opened connections in

the case, when the CM is a server listening for multiple connection

establishment attempts from the SUT, and for each established connection the

CM has to notify the component. Situations like this can be handled by

notifying the component with the ciStatus message.

When: In a response to ciOpen() operation, when the CM System was able to

provide a CM to handle the new connection, and the CM has performed any

actions needed to make the new connection ready to be used.

ciClose (Component ���� CM)

In: CiClose close_s

 Message of type CiClose . See Table 5-2 for its contents.

Purpose: With this operation a previously opened connection can be closed. The

component specifies the to-be-closed connection by sending a message of

type CiClose via its control port. The message specifies the TSI data port,

via which the connection has been previously established, the used CM Class,

and any class specific parameters that may affect the way the connection

should be closed.

 Once this operation has been performed, the component may not perform any

other CI operations for the same TSI data port until this operation has been

confirmed by the receiving CM with the ciClosed() operation. Like with

 76

the ciOpen() operation, this operation has no effect on the configuration of

other TSI data ports, or on configuration done by any other components.

When: When a successfully opened connection needs to be closed.

ciClosed (CM ���� Component)

In: CiClosed close_r

 Message of type CiClosed . See Table 5-2 for its contents.

Purpose: This operation is A) confirmation to the ciClose() operation, B) an

indication that a ciOpen() operation has failed, or C) a closing indication

concerning a previously opened connection.

When: A) In a response to ciClose() operation, after the connection has been

closed so, that the CM Class is ready to re-establish the connection if

requested.

 B) In a response to ciOpen() operation, when a new connection could not

be opened for some reason. In this case the CiClosed message can also be

sent by the CM System, if it notices before it has passed the open request to a

CM Class, that the request cannot be fulfilled. Section 5.3 Error Handling

contains more details on error handling.

 C) As an indication to the component, that the connection it had previously

opened has been closed without the component requesting for it. This may

occur for example when the CM notices that the SUT has terminated the

connection, or that the transmission medium becomes unavailable or does not

behave correctly (e.g. unplugged network cable, network congestion). When

exactly this indication is sent depends on the used CM Class and the used

configuration parameters.

 77

ciControl (Component ���� CM)

In: CiControl control_s

 Message of type CiControl .See Table 5-2 for its contents.

Purpose: With this operation it is possible to send CM Class specific control

information to the CM handling a previously opened connection. The

meaning of this operation depends on the used CM Class.

For example, if the CMs of the used class are server programs that can listen

for connection establishment attempts from several SUT addresses, this

operation can be used accept and disconnect those connections one by one.

When the server is not needed anymore, it can be closed with the

ciClose() operation. See Section 5.4.7 for an example scenario.

When: When a connection has been previously opened with the ciOpen()

operation, and the used class supports this optional operation.

ciStatus (CM ���� Component)

In: CiStatus status_r

 Message of type status_r . See Table 5-2 for its contents.

Purpose: With this operation a CM can send CM Class specific status information to

the test case. This operation may be used as a response to the ciControl()

operation, or it may be sent by the CM as a result of certain event. See Section

5.4.7 for an example scenario.

When: When a connection has been previously opened with the ciOpen()

operation, and the used class supports this operation.

ciData (Component ���� CM)

In: Any TTCN-3 value, template, or function signature.

Purpose: This operation is refers to the TTCN-3 port statements send , call , reply ,

and raise , which are performed on a data port, via which a data connection

 78

has been previously opened with the ciOpen() operation. These operations

can be seen as requests to the CM System to deliver to the SUT.

When: When a connection has been previously opened with the ciOpen()

operation.

ciDataInd (CM ���� Component)

In: triEnqueue*() parameters.

Purpose: This operation refers to the CM sending an event to a component via a TSI

port, for which the component has previously opened a data connection with

the ciOpen() operation.

When: When a connection has been previously opened with the ciOpen()

operation, and the CM handling the connection has received a message or

procedure operation from the SUT, which should be delivered to the

component.

5.3 Error Handling

During any of the operations it is possible that something goes wrong. Some of the CSI,

CCI, and MI operations specified in Appendix A have a return value of type

csiStatus , which tells whether the operation could be handled or not, but this may not

be sufficient error handling, since these return values are not seen at the test case level. In

this section it is shortly outlined how the error handling can be extended to the test case

level and performed there, if required.

In case a CM Class or its CM detects an error, it may choose to notify the test case

component with the ciStatus or ciClosed message. The message may contain in a

class specific format a description of the error that occurred. An error occurs for example

in the following situations: the class is not able to decode the parameter data it receives,

or the user tries to communicate with the SUT with procedure-based operations but the

used class supports only message-based communication.

 79

The situation is more difficult when an error affecting a connection occurs within the CM

System Component. For example, if the CM System Component is handling a ciOpen

message and it fails to forwards the open-request to the right CM Class, the CM System

Component should be able to negatively acknowledge the ciOpen message with a

ciClosed message as required in 5.2.4 Operations. As it is shown in Figure 5-3 and

Figure 5-4, the ciClosed message (like all the other CI control operation messages)

contains a parameter field class , which is a union of the class specific parameter types

of every CM Class. The selected union alternative is used to specify the used CM Class.

Even if the CM System Component knew for which class it should create an error

indication, it cannot send a ciClosed message on behalf of any of the classes, because

only the classes know the contents and transfer syntax they use for their class specific

parameters.

It could be required, that each class provides a method with which the CM System

Component can request the class to send the message to the component on its behalf.

Unfortunately, this does not work in the situation in which an unregistered or non-existing

class is tried to be used from the test case level, since the CM System is unable to call the

method.

A new CI control message of type ciError could be introduced, which would be used

by the CM System Component to send error indications to the test case components. If

this new type was added, then its exact meaning would have to read from its context or

contents: is it an error acknowledgement to ciOpen or to some other operation, or is it a

stand-alone error indication. If the ciError did exist, then it might be as well used by

the CM Classes in addition to the CM System Component. The ciError type would

then need to contain either a union of class specific error types, just like the parameter

unions are used in the other CI control messages. Alternatively, it could contain a separate

field for identifying the CM Class and a field of a common data type for the error

information. At this point the ciError type is almost identical to the other CI control

message types, except that its meaning (e.g. is it a negative acknowledgement to the

ciOpen) has to be included within its error information field, which complicates its

interpretation and handling.

 80

Instead of using a separate ciError message, it may be easier to specify a union

alternative sys for the Ci<OperationName>Params types, which is used by the CM

System Component in the CI control messages whenever it has to communicate with a

test case component. The sys alternative should be present at least in the CiStatus

and CiClosed message types, as shown in Figure 5-6 for the CiClosed type.

In the CiClosed type the sys -alternative can be used to negatively acknowledge the

ciOpen messages, for example when the user tries to use a CM Class that does not exist

in the CM System. In CiStatus type it can be used by the CM System Component to

indicate about situations in which no connection has been closed but an error is detected

within the CM System. An example of this is that the CM System Component is unable to

decode a CI operation message that it receives in the transfer syntax form, because of an

erroneous encoding.

If the test case writer has to handle all the possible error messages that might be received

from the CM System or from the CM Classes, the test cases soon become obfuscated by

the error handling. To prevent this situation, all the CM System and the CM Classes

module CmSystem
{
...
 group ciOperations
 {
 ...
 type record CiClosed
 {
 CiTsiPort tsiDataPort optional,
 CiClosedParams class
 }
 ...
 }

 group ciFieldTypes
 {
 type union CiClosedParams
 {
 /* This is the alternative used by the CM System with
 * the ciClosed operation.
 */
 C mSystem.Closed sys,
 /* This is the alternative used by the cla ss Socket with
 * the ciClosed operation.
 */
 CmSocket.Closed socket,
 ...
 }
 ...
 /* The type could be just a string describing why the CM System
 * closed a connection or why it could not op en it.
 */
 type charstring Closed;
 ...
 }
}

Figure 5-6: The sys -alternative used by the CM System.

 81

should provide default altsteps , which do the error handling on the behalf of the test

case writer. These default alternatives (see Section 2.10) can be activated by the user in

the beginning of each test case for those components and ports that use the CI control

messages. The defaults provided by the CM System can be seen as top-level error

handlers. Because the firstly activated defaults are evaluated the last, the defaults

provided by the CM System should be activated before the defaults of CM Classes, which

in turn should be activated before any user specified defaults. If a class provides several

defaults, then it could be useful if the class provided a parameterized function, which can

be used to activate all or some of the defaults with a single call.

A simple default altstep provided by the CM System could be such as shown in

Figure 5-7. It sets the test case verdict to inconclusive when a CiClosed message is

received from the CM System, after which it calls a function that notifies the MTC about

the situation. The MTC in turn shuts down all the existing test case components in a

centralized manner. The way in which the expected CiClosed message has been

defined with an inline-template is not necessarily considered as good TTCN-3

programming style, but is used here for the sake of brevity.

5.4 Connection Interface Usage Examples

This section shows with two examples how the Connection Interface can be are used to

open communication channels with the SUT. In the first example a connection with the

SUT is actively opened, while in the second one a server program is created to passively

listen for connection establishment attempts from the SUT.

module cmSystem
{
 ...
 altstep d_ciClosedHandler(CiCfgPort p_port)
 {
 // If we receive a CiClosed message sent by the CM System Component
 [] p_port.receive(CiClosed: {?, {sys := ?}})
 {
 setverdict(inconc);
 notifyMainTestComponentAndShutDown();
 }
 }
 ...
}

Figure 5-7: An example default altstep() for handling the CiClosed messages

sent by the CM System.

 82

5.4.1 Operation messages

The test case writer has three different Connection Interface type definitions, which are

used to configure connections by sending messages of these types via control ports:

CiOpen,
CiControl,
CiClose.

The responses or acknowledgement messages to these are sent by the CM System and

their types are:

CiOpened,
CiStatus,
CiClosed.

Of these, only the CiOpened message is strictly an acknowledgement message, and it is

always sent by the CM System as a response to CiOpen when a connection has been

successfully opened. CiClosed is sent by the CM System as an error indication when a

connection cannot be opened, or when a previously opened connection has been closed by

the SUT, or the connection has been lost for some other reason. The usage of CiStatus

is class specific; it can be used as a response to CiControl message, but it can also be

used independently of it for example when the used CM Class needs to notify the test

case about an event.

All the message types contain the same two fields. The first field

ciOpen.tsiDataPort

identifies the TSI port that is being configured. The port is identified by its name and by

an index value if the TSI port is a port array. The configuration is done per component

basis, so another component may configure the very same TSI port for completely

different use, without affecting any configurations done by other components.

The second field is used to choose and identify the used CM Class (transport mechanism).

It is a union of all the present communication mechanisms available to the users. The CM

System takes care, that when a test case component sends a value of CiOpen type in

which field

ciOpen.class.tcp

 83

is present, this is automatically routed to the class that is identified by name "tcp ".

Similarly,

 ciOpen.class.udp

is routed to the class "udp ". When a test case component receives a message from the

CM System, the union alternative of class field identifies the class that sent the

message. For example, when the tcp alternative is present in the message, it means the

message was sent by the class “tcp ”:

ciOpened.class.tcp.

All the other parameters the user can set depend on the used class. For example, a CM

Class called "tcp " could contain the following parameter fields:

ciOpen.class.tcp.localPort,
ciOpen.class.tcp.localIp.ipv4,
ciOpen.class.tcp.remotePort,
ciOpen.class.tcp.remoteIp.ipv6,
ciOpen.class.tcp.options.rxBufferSize.

If a new communication mechanism is implemented, a new alternative is simply added

into the class field of the CI operation messages to make it usable. A new

communication mechanism could be identified as "ethernet ", and when it is added

into the ciOpen.class union, the CM System automatically routes the configuration

messages in which this new alternative is present to the CM Class identified as

"ethernet ".

5.4.2 TCP connection – open request

The test system configuration could be as shown in Figure 5-8: Two different components

want to use the same TSI port “pt_protoX ” to communicate with different SUT end

points. For both of these connections, there will be an own CM, which takes care of

maintaining the connection with the SUT. The CMs encapsulate all the messages received

from the components within TCP-frames and deliver them to the SUT.

 84

In this example the test case components are defined as:

type component TestComponent
{
 port CiCfgPort pt_ctrl;
 port ProtocolX pt_data;
}

The used test system interface component is defined as (or is compatible with):

type component TsiComponent
{
 port ProtocolX pt_protoX;
 port CiCfgPort pt_config;
}

When the user wants to establish a TCP connection between local IPv4 address

"127.0.0.1:4242" (which in this case stands for the IP address assigned to one of the

network interfaces of the computer, in which the test case is executed) and IPv6

destination "fe80::20f:20ff:fe73:80", then the required TTCN-3 code for a component to

request the CM System to open the TCP connection could be the following:

 ...
 var CiOpen ciOpen;
 ciOpen.tsiDataPort.name := "pt_protoX" // Refe rs to system port
 ciOpen.tsiDataPort.index := omit; // Single port , not an array
 ciOpen.class.tcp.localPort := "4242";
 ciOpen.class.tcp.localIp.ipv4 := "127.0.0.1";
 ciOpen.class.tcp.remotePort := "80";
 ciOpen.class.tcp.remoteIp.ipv6 := "fe80::20f:20f f:fe73";
 ciOpen.class.tcp.options.rxBufferSize := 1024;
 ...
 map(self:pt_data, system:pt_protoX);
 map(self:pt_ctrl, system:pt_config);
 pt_ctrl.send(ciOpen);
 ...

TSI component CM Class tcp

CM
handling
Component
1

localPort

Component
1

pt_data

pt_ctrl

Component
2

pt_data

pt_ctrl

CM
handling
Component
2

localPort

pt_protoX

SUT

port

port

pt_config

TCP
connection

Figure 5-8: Class “tcp” example.

 85

The code fragment sends a request to the CM System to open via TSI port

“pt_protoX ” a connection using CM Class “tcp ”, with the following class specific

parameters: local and remote port, local and remote IP, and receipt buffer size (which

could be used to set TCP window size, but which in here is just an example parameter).

To avoid the need of filling in all the different parameter fields, the used CM Class could

provide a TTCN-3 module containing parameterised templates for different purposes,

with default values for seldom used parameters.

5.4.3 TCP connection – opened confirmation

Before a component can start to send or receive data via a connection, whose

configuration it has started by sending the CiOpen message, the component is required

to receive a CiOpened message to confirm that the connection is ready to be used. The

component may send concurrently another CiOpen message for another connection that

should be opened before receiving an acknowledgement to the first one. Similarly to

CiOpen message, its positive and negative acknowledgement messages CiOpened and

CiClosed contain the fields .tsiDataPort and .class :

ciOpened.tsiDataPort
ciOpened.class.tcp

ciClosed.tsiDataPort
ciClosed.class.tcp

The class specific parameters do not have to be the same as in CiOpen , because a class

does not necessarily need to or want to echo back to component the same parameter

values the component sent to it. The parameters of CiOpened message could contain for

example status information and identifiers that can be used in further communication. The

parameters of CiClosed message could contain an error code, which explains why the

connection could not be opened to help in solving the problem.

Going back to the "tcp "-class example, the TTCN-3 code for the receipt could be the

following: First, it is checked that the response is to the right CiOpen message by

checking that the port identifier and the present class are correct in the received message

(i.e. the same as in the sent ciOpen message). If the connection was successfully

opened, the positive acknowledgement ciOpen is received from the CM that handles the

 86

connection. It contains the MAC-address of the network adapter of the SUT, if this can be

resolved (just for an example). In the case the connection could not be opened, the

received CiClosed message contains a description of what went wrong. The actual

TTCN-3 code for doing this could be the following:

...
var CiClosed ciClosed;
var CiOpened ciOpened;
...
alt
{
 // The .receive(..) contains an inline template definition of type CiOpened:
 [] pt_ctrl.receive(CiOpened:{ciOpen.tsiDataPort, {tcp := ?}) -> value ciOpened;
 {
 log("Connection opened successfully.");
 // Store the mac address of the SUT
 g_myMac := ciOpened.class.tcp.sutMac;
 }
 [] pt_ctrl.receive(CiClosed:{ciOpen.tsiDataPort, ?}) -> value ciClosed
 {
 log("Connection could not be opened successfu lly.");

 /* Note: the below use of concatenation opera tor is not
 * standardized as of writing this document.
 */
 log("Error reason: " & ciClosed.class.tcp.err orCode);
 setverdict(inconc);
 }
 [] pt_ctrl.receive
 {
 log("Unexpected message received.");
 setverdict(inconc);
 }
}
...

To simplify the test case writing, the CM Classes could provide a set of altstep, which can

be used to automatically handle the receipt of acknowledgements. The test case writer can

activate these as default alt statement alternatives, or they can be called manually in an

alt statement. The classes could also provide functions, which contain both the sending

of requests and the handling of the confirmation messages, thus the TCP connection

opening –example could then be reduced to a single function call. The following TTCN-3

code fragment shows how function the f_tcpOpen() , provided by the class “tcp ”,

could be used to open a TCP connection. The function is simply called a component, and

it returns a boolean value, which tells to the caller whether the connection was opened

successfully or not:

 87

...
var TcpMac myMac;
var CiTsiPortId tsiDataPort := {"pt_protoX", omi t};

if (not f_tcpOpen(pt_ctrl,
 tsiDataPort,
 a_tcpOpenDefault("fe80::20f:20ff: fe73",
 "80"),
 myMac)
)
{
 setverdict(false);
 stop;
}
...

The definition of the used f_tcpOpen() could be the following:

function f_tcpOpen
(
 inout CiCfgPort p_controlPortOfTheComponent ,
 in CiTsiPortId p_tsiDataPortIdentifier
 in TcpOpenParams p_tcpClassSpecificParams,
 out TcpMac po_macAddr
)
 return Boolean
{
 // Sending of ciOpen request:
 ...
 /* Usage of alt-statement like shown earlier in this section to handle
 * the ciOpened confirmation and the possible ci Closed failure indication.
 * If CiOpened is received, function returns tru e, else it returns false.
 */
 ...
}

The first parameter is the control port of the component via which the function should

send and expect control messages. The second parameter identifies the TSI port via which

a new data connection is wanted to be opened, and the third parameter contains the class

specific parameters. The fourth parameter returns to the caller the MAC-address of the

SUT. The port is passed as parameter to the function, because the function does not have

a runs on -clause, which would be needed to make the ports of the component visible

to the function (see Section 2.6). According to the TTCN-3 definitions, the above

function cannot invoke internally any altsteps or functions for which a runs on –clause

has been specified, because it self does not contain the runs on –clause. To fix this

problem, the function definition could be as above except that the port parameter is

omitted, and a runs on clause is added:

 88

function f_tcpOpenWithRunsOn
(
 in CiTsiPortId p_tsiDataPortIdentifier
 in TcpOpenParams p_tcpClassSpecificParams,
 out TcpMac po_macAddr
)
 runs on CiControl
 return Boolean
{
 ...
}

The definition of the component type CiControl on which the function

f_tcpOpenWithRunsOn is specified to run could be defined as:

type component CiControl { CiCfgPort pt_ctrl }

This definition of CiControl is runs on –compatible with the definition of

TestComponent :

type component TestComponent
{
 port CiCfgPort pt_ctrl;
 port ProtocolX pt_data;
}

This means that f_tcpOpenWithRunsOn can be called from a component of type

TestComponent , and f_tcpOpenWithRunsOn has an access to the CiCfgPort

ctrl -port, without the need to provide it as one of the function parameters. This is

useful, because when the functions the class “tcp ” are designed, it is not known in which

kind of component types want to use the services provided by the class. Because of this,

all the functions and altsteps the class provides could be defined to be run on components

of the type CiControl . As long as the client test case components are runs on –

compatible with the CiControl , they can call the functions provided by the class.

5.4.4 TCP connection – data

Once the component has received the ciOpened confirmation message from the CM

System, it can start using the opened data connection. For example, when the SUT is

assumed to be a web-server and HTTP GET method is used to request web page via the

opened TCP connection, the TTCN-3 code could be something like the following:

 89

...
var ParsedHttpResponse response;
...
pt_data.send(a_httpGet("~kermie/index.html"));
t_getTimer.start;

alt
{
 [] pt_data.receive(a_httpOk(?)) -> value respo nse
 {
 // Got the requested page
 ...
 }
 [] pt_data.receive(a_httpNotFound(?))
 {
 // Did not receive the page, even though it s hould be there
 }
 ...
 [] t_getTimer.timeout
 {
 ...
}

5.4.5 TCP connection – close request

When a connection is not needed anymore, it should be explicitly closed during test case

by sending a CiClose message, just as it was done with CiOpen message to open the

connection. The class specific parameter for closing the connection may contain

parameters on how the connection should be closed: are possibly buffered messages

transmitted or discarded, and is it waited until the SUT acknowledges closing of the

connection.

In the case of the point-to-point TCP example, the TTCN-3 code for requesting the CM

System to close a connection could be the following:

var CiClose ciClose;
ciClose.tsiDataPort.name := "pt_protoX";
ciClose.tsiDataPort.index := omit;
ciClose.class.tcp.shutdownMethod := "graceful";

pt_ctrl.send(ciClose);

If the situation is like in Figure 5-8 and Component 1 executes the above code, the CM

System will close the data connection that the component has via its port pt_data ,

which is mapped with the TSI port pt_protoX . Once the component has sent the

CiClose message, it is illegal for it to send any other messages concerning the same

connection, until the CiClose message has been acknowledged by the CM System with

a CiClosed message. The component may configure or use other connections (not

shown in the figure) while waiting for the acknowledgement. The closing of the

 90

connection done by Component 1 has no effect on the connection that Component 2 has

via the same TSI port, because every component that exists during a test case may

configure any of the TSI ports independently from each other.

5.4.6 TCP connection – closed confirmation and indi cation

Similarly as CiOpened message is used to acknowledge the CiOpen message, the CM

System uses CiClosed message to acknowledge the CiClose message. CiClosed

message is also used as a negative acknowledgement to CiOpen , when opening of a new

connection fails for some reason, and as an indication, when a previously opened

connection has been closed. Because of this, a well-written test case has to be ready to

accept the CiClosed messages at any time via its control port. The non-requested or

unexpected closing indications can be handled by activating a class provided default

altstep in the beginning of the testcase or a function, like is done in the below code:

testcase tc_example()
 runs on TestComponent
 system TsiComponent
{
 ...
 /* pt_ctrl is port reference this components con trol port,
 * {"pt_protoX", omit} is a value of type CiTsiP ortId
 */
 activate(def_tcpClosedInd(pt_ctrl, {"pt_protoX", omit}));
 ...

The def_tcpClosedInd is an altstep, which takes a reference to the control port of

the component as the first parameter, and identifier of the TSI port as the second

parameter, to be able to know which component port is used for the CI control messages,

and which data connection is in question.

A confirmation to the CiClose message could be handled with a class provided altstep,

or manually like in the below TTCN-3 code fragment. The receive statement re-uses

the TSI port name from the sent ciOpen message (ciOpen.tsiDataPort):

var CiClosed ciClosed;
pt_ctrl.receive(CiClosed:{ciOpen.tsiDataPort, {tcp := ?}) -> value ciClosed;

/* The below log statement call is not standardized , but
 * an example of how one might return statistics da ta within the
 * ciClosed message, and have them printed into the log file.
 */
log("Connection closed successfully. Statistics of the connection:");
log(ciClosed.class.tcp.connStats);

 91

5.4.7 TCP server example

In some test cases, it should be possible to accept incoming connection establishment

attempts from the SUT. To handle situations like this, the used CM Class needs to

provide CMs that are servers, which listen to establishment attempts from specified

sources. Depending on how the class is implemented, some extra signalling might be

needed to notify test components when new connections have been established. This extra

signalling can be done with CiControl and CiStatus messages, which are used also

in this example.

The usage of a CM Class called "tcpServ " is explained next. The "tcpServ " is just

like any other CM Class: to communicate via TSI, one must first open a new connection

by sending a CiOpen message. The difference between "tcpServ "-class as the "tcp "-

class is that here "opening" of a connection means either starting of a TCP socket server

process or joining it (i.e. opening a communication channel with it). Which action is done

depends on the class specific parameter values. From the CM System Component point of

view the CiOpen message always means "please open a new connection", with no other

particular meaning. The complete meaning of sending a CiOpen message depends

entirely on the used CM Class. During handling of the CiOpen message, the CM System

Component stores a mapping from the test case component to a certain CM, which in this

case is happens to be a TCP-server process.

There is more than one approach how a class like "tcpServ " could be used from the test

case level. One way to use the class is that one of the test case components is a creator-

component, which creates the TCP-server, and then creates and assigns worker-

components to handle any new SUT established connections, the existence of which is

reported to the creator-component by the TCP-server. A variation of this is to have one

component to create the server, but this time the TCP-server assigns the handling of the

established connections to the available worker-components, that have joined with the

server. In both cases, each of the components using the server must first open a

connection with the server by using the CiOpen message, so that the server knows their

existence, before they can start sending or receiving data via any of the TSI port. In this

example, the latter approach is used and the test system configuration is as in Figure 5-9.

 92

The server creator component is responsible for starting up the CM entity called

“myServ”, which acts as a TCP socket server. After this, the worker components may join

with the server to make themselves known to it. The server notifies free worker

components about any new connections the SUT opens with the server. A worker

component can reply to the server whether it is willing to handle a particular connection

or should the connection be closed by the server. Each of the worker components is

mapped with the same TSI port “pt_protoX ”, but they each communicate with

different SUT address via the server.

The test case components need a way to identify the used server if the CM Class is such

that it supports several differently configured servers simultaneously. The server

identifier could be given to the server by the component that creates it, or it could be

given by the CM Class of the server. If the identifier is given by the CM Class, it can be

made known to the test case components as one of the return values of the CiOpened -

message that acknowledges the server creation. In this example this is done the other way

round. The creator-component decides the identifier for the server, so the class specific

part of the CiOpen message contains the server identifier as one of its fields. It also

passes this identifier to all the worker-components it creates.

The following TTCN-3 type definitions are used to start up the server and to join it:

TSI component

Server
creator
component pt_ctrl

Worker
component

data

ctrl

Worker
component

data

ctrl

Worker
component

pt_data

pt_ctrl

pt_config

p_protoX

CM Class tcpServ

CM
”myServ” listenPort

SUT

port

port

port

From component:
ciOpen.class.tcpServ.srvStart
ciClose.class.tcpServ.srvStop

From components:
ciOpen.class.tcpServ.srvJoin
ciClose.class.tcpServ.srvPart
ciControl.class.tcpServ.conn.accept
ciControl.class.tcpServ.conn.reject
ciControl.class.tcpServ.conn.close

To component:
ciOpened.class.tcpServ
ciClosed.class.tcpServ

To components:
ciStatus.class.tcpServ.conn.new

Figure 5-9: Class “tcpServ” example.

 93

// From common Connection Interface type definition s: e.g. CiMessages.ttcn3:
type record CiOpen
{
 CiTsiPortId tsiDataPort optional,
 CiOpenParams class
}

type union CiOpenParams
{
 CmFrameRelay.Open frame,
 // Open type from module CmTcpServ:
 CmTcpServ.Open tcpServ,
 ...
}

// From TcpServ class specific definitions: e.g. Cm TcpServ.ttcn3:
type union Open
{
 ServStart srvStart,
 ServId srvJoin
}

type record ServStart
{
 Port listenPort,
 ServId servName
}

type charstring ServId length (1 .. 64);
type integer Port (1 .. 99999);

To start a server, the server creator component first sends a CiOpen message with the

following contents via its control port:

ciOpen.tsiDataPort := omit;
ciOpen.class.tcpServ.srvStart.listenPort := 5000;
ciOpen.class.tcpServ.srvStart.servName := "myServ";

The tsiDataPort value is here omitted, because the server creator component has no

need for a data connection and it does not have a data port (see Figure 5-9).

This causes the CM Class "tcpServ " to start up a new CM with name "myServ ",

which listens for incoming connections at TCP port 5000. The CM acknowledges that it

is fully functional by sending CiOpened to the server creator component via the control

port. It is here assumed, that the server rejects any incoming connection attempts from the

SUT as long as there are no free worker components present.

To handle SUT established connections, the worker components make their existence

known to the server by each sending a CiOpen message via their control ports. The

message has the following contents:

ciOpen.tsiDataPort.name := "pt_protoX";
ciOpen.tsiDataPort.index := omit;
ciOpen.class.tcpServ.srvJoin := "myServ";

 94

The CM System Component knows from the tsiDataPort value via which TSI port a

component wants to open a data connection (with the server). The CM Class "tcpServ "

knows from the server identifier "myServ ", that a component wants to use this

previously created server. The CM "tcpServ " acknowledges to each of the worker

components with a CiOpened , that the component is now connected with the server.

When the SUT establishes a connection with the server, the server notifies one of the

joined components about this with a CiStatus message, which contains the IP- and

port-address of the SUT. The component then decides whether it accepts the connection,

and sends its conclusion to the server in a CiControl message. If the component

accepted the connection, the server starts to forward any data received from the specific

SUT address to the worker component via the chosen data port, and the other way round.

In the case the component decided to reject the connection, the server closes the TCP-

socket. The below code fragment shows the type definition of the CiControlParams

union used in the CiControl message, and the class specific types Control and

ServConn :

// From common Connection Interface type definition s, e.g. CiMessages.ttcn3:
type record CiControl
{
 CiTsiPortId tsiDataPort optional,
 CiControlParams class
}

type union CiControlParams
{
 ...
 // Control type from module CmTcpServ:
 CmTcpServ.Control tcpServ,
 ...
}

// From TcpServ class specific definitions, e.g. Cm TcpServ.ttcn3:
type record Control
{
 ServId server,
 ServConn conn
}

type union ServConn
{
 IpAddrAndPort accept, // This alternative accep ts a connection
 IpAddrAndPort reject, // This rejects
 IpAddrAndPort close // This closes
}

When a worker component wants to close a connection assigned to it, it send a

CiControl message with "close" instruction to the server. When a component wants to

 95

"part" the server, as opposed to joining it, or when it wants to shut down the server, it

sends an appropriate CiClose message to the server. The CiClosed message contains

a class specific part like in CiOpen and CiControl , with which the desired action is

chosen:

// From common Connection Interface type definition s, e.g. CiMessages.ttcn3:
type union CiCloseParams
{
 ...
 // Control type from module CmTcpServ:
 CmTcpServ.Close tcpServ,
 ...
}

// Used in union CiCloseParams.
type union Close
{
 ServId srvPart, // This alternative parts from a server
 ServId srvClose // This alternative close s a server
}

5.5 Overview of CM System Interface

The CM System Interface (CSI) is used by the SA to use the services provided by the CM

System (Component). There are three categories of operations at the CM System

Interface: system, class, and connection. With the system level operations the SA can

initialize and shutdown the whole CM System. The class level operations are used by the

SA to register the used CM Classes into the system. In registration of a class the SA

passes an interface object or method to the CM System. This interface object is used by

the CM System Component to call classes’ implementations of the CM Class Interface

operations, which are explained in the next section. Once the registration is completed,

the SA can instruct the CM System Component to call the class specific initialization

function of each class. During test case execution, the SA uses the connection level

operations to forward the TRI operations resulting from Connection Interface operations

to the CM System to be handled.

The connection level operations are listed in Table 5-5. When a test case component

wants to open a new connection by using the ciOpen() operation (5.2.4, 5.4.2), this is

seen by the SA as the triSend() operation at the TRI interface. Because the SA does

not know which TSI ports are control ports, it does not know whether the

sendMessage parameter of the triSend() contains a control message or user data.

 96

The CM System Component provides operation csiConnDecodeOp() to the SA,

which identifies the message for the SA and tells it what CSI interface operation it should

call to handle the message. If the message was received via a TSI control port, then it is

assumed to contain a control message, such as the ciOpen message encoded in the

format of CmSysControlMessage (specified in Table 5-3). In this case the

csiConnDecodeOp() also decodes the message. If it was received via a TSI data port,

then it contains user data and no decoding is done. Because in this example the

sendMessage does contain the ciOpen message, the csiConnDecodeOp()

decodes it and instructs the SA to call the csiConnOpen() with the decoded values.

After this the SA has done everything needed. All the triSend() invocations are

handled in this way.

In the case of procedure-based operation (such as call), the SA calls directly the right

CSI operation (csiConnCall() , csiConnReply() , csiConnRaise()) without

first consulting the decode operation, because the procedure-based communication can

contain only user data.

The operations and data types of the CM System Interface are specified in detail in

Appendix A.1

Table 5-5: Connection operations of CM System Interface.

Category: Call Direction: Operation Identifier:

SA � CM System Comp.

SA � CM System Comp.

SA � CM System Comp.

SA � CM System Comp.

SA � CM System Comp.

SA � CM System Comp.

SA � CM System Comp.

SA � CM System Comp.

csiConnDecodeOp:

 csiConnOpen

 csiConnControl

 csiConnClose

 csiConnSend

csiConnCall

csiConnReply

csiConnRaise

Connection

SA � CM System Comp. csiConnTerminate

 97

5.6 Overview of CM Class Interface

The CM Class Interface is the interface between the CM System Component and the CM

Classes. The operations consist of class and connection level operations, and of an

encoding operation. With the class level operations the CM System Component can

initialize the CM Classes before they are used. The connection level operations provided

by the CM Classes correspond with the connection level operations of the CSI interface

(previous section), and they are cciConnOpen() , cciConnControl() , cciConn-

Close() , cciConnData() , and cciConnTerminate() . The cciConnData

operation groups together all the non-configuration operations (csiConnSend() ,

csiConnCall() , csiConnReply() , csiConnRaise()). All these CM Class

Interface operations are implemented by the CM Classes in a class specific manner.

The CM System Component provides operations cciConnClosed() and

cciEncodeCiCtrlOp() to the CM Classes. The operation cciConnClosed() is

used by the CM Class or its CMs to indicate to the CM System Component when a

connection is closed without the CM System Component requesting for it, so that it

knows to update its controlMap and handlerMap data structures accordingly. When

a CM wants to send a Connection Interface level message (CiOpened , CiClosed ,

CiStatus) to the test case component, it can use cciEncodeCiCtrlOp() to do the

encoding of the CI control message into CmSysControlMessage format (Table 5-

3). Thus, the CM Classes and their CMs do not need to known the transfer syntax of the

Connection Interface control messages, except for their own class specific parameter part.

The operations and data types of the CM Class Interface are specified in detail in

Appendix A.2.

5.7 Overview of Mapping Interface

Mapping Interface (MI) is a small interface between the CMs and the SA, and all the

operations are provided by the SA. With these operations the CM can lock and release a

test case component identifier and a TSI port identifier stored in the SA’s tsiMap data

structure for a small duration of time, when it is about to enqueue a message or procedure

 98

operation to the test case component by using a TRI interface triEnqueue*()

operation. The CM uses csiConnId (explained in 4.3.2, 4.3.3) as the key to query for a

(component identifier, TSI port identifier)–pair. If no pair matching with the

csiConnId can be found, the CM knows from this that the component has unmapped

its port from the TSI port, and it does not try to communicate with it. When a (component

identifier, TSI port identifier)–pair is found, it becomes locked for the CM. If the SA tries

to call the triUnmap() operation while a pair is locked, it becomes blocked in

invocation of the operation (see section 3.3) until the pair is released by the CM. This is

needed to avoid the situation in which a CM might call a TRI operation with invalid out-

of-date values. The TTCN-3 standard does not specify what is the result of using out-of-

date values, hence this interface is used to avoid any undesirable effects on the test case

verdict and to make the system more portable between different TTCN-3 tools of

different vendors.

This interface specifies only the lock and release operations used by the CM, and they can

be found in Appendix A.3. In addition to these, the SA has to implement its tsiMap data

structure and triUnmap() operation in such a way that they take the locking into

account.

 99

6 CONCLUSIONS
In the first part of this thesis work an overview of the TTCN-3 Core Langue was given

and it was explained what kind of entities and standardized interfaces exist in TTCN-3

test system. In the second part it was shown how one could design on the top of the

TTCN-3 standard such a connection management system, that provides simultaneously

several kinds of the connection means with the SUT. These different connection means

can be used in a uniform way from TTCN-3 test cases, and when new means are

developed, these can be easily added into the system without breaking the existing

TTCN-3 source or SUT Adapter code.

When designing new CM Classes one needs to consider how the connection management

related parameters are seen at the test case level by the user. Are they made easy to be

encoded into to a transfer syntax form, or are they designed easy to be used by the user

and perhaps bit harder to be encoded. Some thought needs to be put on how codecs can be

taken into use in the chosen TTCN-3 tool, and how they are designed and implemented.

This is needed to avoid situations in which addition of a new field to a type, or changing a

type identifier breaks an existing codec. Designing a generic codec by using the interfaces

provided by the standard can be difficult, thus in this work an idea of a CM Class Codec

System was introduced. It helps in adding new classes into the system without breaking

the codecs of the Connection Interface messages (CiOpen , CiOpened , and so on), by

giving the codecs of these types an access to the class specific codecs.

What was not considered in this work are the exact language mappings (such as for C or

Java) of the CM System Interface, the CM Class Interface, and the Mapping Interface.

The types used in the interfaces probably need own functions with which they can be

operated. For example, there could be a function or a method that generates a

csiConnId identifier from the component and port identifiers that are received as the

parameters of the triSend() operation. When designing language mappings of the

interfaces, one needs to consider how parameters are passed over the interfaces. In the

given abstract interface specifications all the values are assumed to be passed safely by

copying. In a real implementation this pass-by-copy would be inefficient. Based on the

 100

experience gained on the prototype code that was written during this thesis work, one

should be able to rather easily specify the interfaces in a way that avoids excess copying.

A topic that was not considered in the text is how the used TTCN-3 types should be

grouped into modules, and what kind of TTCN-3 types, templates, functions and altsteps

the modules of the different CM Classes should provide. The definitions related to a CM

Class could be stored into an own module, but this class specific module could be divided

even further: the (public) definitions required to use the services provided by the class

could be stored into one module, and the (private) definitions that are used by the class

internally could be stored into another module. TTCN-3 Core Language contains also a

language element called group , which can be used to group definitions within a single

module. It could be used if it turns out that it is more feasible to keep the definitions in a

single module, instead of having a public and a private module. A common naming

convention used in the modules of the different CM Classes might worth be considering.

If the “top level” error handling altstep provided by every class were titled as

“alt_errorTop” , then the user would directly know which altstep to use.

The test case writer can open connections by using the Connection Interface operations

directly. Instead of having to write the operation parameters and the port statements each

time by hand, it could be required that every CM Class provides a set of functions and

default altsteps for doing this on the behalf of the test case writer. Some functions and

altsteps could be mandatory for every class (such as the ones for error handling) and they

could use similar parameters differing only in their type but not in their meaning. Another

useful feature would be to have some kind of centralized error handling that could be

started in one of the test case components. It would take care of instructing all the test

case components to close their connection, when there is a problem with one of the

connections. If this kind of centralized error handling was designed, it should work over

the CM Class boundaries by being able to shutdown connections of any kind.

In the text the Connection Managers were presented as entities, that maintain connections

with the SUT. However, nothing prevents the Connection Managers to provide services

other than connections with the SUT. They could be data generators, traffic generators,

databases, script language interpreters, or any other kind of services that might be utilized

 101

during a test case. Usage of the Connection Interface operations in their case would mean

establishing connections with these service providers.

As it was mentioned in the Introduction, as of writing this thesis work there is not much

literature or other material available on TTCN-3 and SUT Adapter design. This thesis

raised issues that need to be considered in the adapter design, and it specified a

framework, which supports several kinds of connection means with the SUT. The

framework should prove very useful over time when new kinds of targets are needed to

be tested. If a framework like the one presented or one with similar capabilities was

widely used and its interfaces were made public, then different companies and

communities could participate in the development of free and commercial Connection

Manager plug-ins. One could then expand the capabilities of an own test system with

these plug-ins without the fear of losing any already existing functionality, thus greatly

reducing time and resources spent in making changes to the existing system, before new

kinds of targets can be tested.

 102

REFERENCES

[T3CORE] ETSI ES 201 873-1 V2.2.1 Methods for Testing and Specification (MTS); The Testing

and Test Control Notation version 3; Part 1: TTCN-3 Core Language. France:

European Telecommunications Standard Institute, 2003. 178 pages.

[T3TFT] ETSI ES 201 873-2 V2.2.1 Methods for Testing and Specification (MTS); The Testing

and Test Control Notation version 3; Part 2: TTCN-3 Tabular presentation Format

(TFT). France: European Telecommunications Standard Institute, 2003. 33 pages.

[T3GFT] ETSI ES 201 873-3 V2.2.2 ETSI Standard Methods for Testing and Specification

(MTS); The Testing and Test Control Notation version 3; Part 3: TTCN-3 Graphical

presentation Format (GFT). France: European Telecommunications Standard Institute,

2003. 165 pages.

[T3OS] ETSI ES 201 873-4 V2.2.1 Methods for Testing and Specification (MTS); The Testing

and Test Control Notation Version 3; Part 4: TTCN-3 Operational Semantics. France:

European Telecommunications Standard Institute, 2003. 138 pages.

[T3TRI] ETSI ES 201 873-5 V1.1.1 Methods for Testing and Specification (MTS); The Testing

and Test Control Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI). France:

European Telecommunications Standard Institute, 2003. 55 pages.

[T3TCI] ETSI ES 201 873-6 V1.1.1 Methods for Testing and Specification (MTS); The Testing

and Test Control Notation version 3; Part 6: TTCN-3 Control Interface (TCI). France:

European Telecommunications Standard Institute, 2003. 106 pages.

[T3MOCKUP] ETSI ES 201 873-1 V3.0.0Mockupv1 Methods for Testing and Specification (MTS);

The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language.

France: European Telecommunications Standard Institute, 2004. 190 pages.

[TIMED] Dai, Z. R., Grabowski J., Neukirchen H. Timed TTCN-3 – A Real-Time Extension for

TTCN-3. TestCom 2002: Testing Internet Technologies and Services, The IFIP 14th

International Conference on Testing of Communicating Systems, March 19th - 22nd,

2002, Berlin. Kluwer Academic Publishers, March 2002. pp. 407-424.

[UNIX] Stevens, Richard W. UNIX Network Programming, Volume 1, 2nd edition. Prentice

Hall, 1998. 1009 pages.

 103

APPENDICES

A INTERFACES IN DETAIL

A.1 CM System Interface

The CM System Interface is used by the SA to use the services provided by the CM

System. There are three categories of operations at the CM System Interface. The ones

that affect the system as a whole are prefixed with “csi ”. With these, the whole CM

System is initialized before it is taken into use, and finalized when its services are not

needed any more. Similarly, the operations used at connection manager class level have

“csiClass ” prefix. With these operations the classes are registered to the system and

initialized before taken into use. The operations that are used to open, control, and close

connections, and to send data through them, begin with “csiConn ” prefix. All the

operations are procedure calls and they are listed in Table A-1.

Table A-1: Operations at CM System Interface. Decode Port Operation is used to

identify the connection related operations that are listed below it.

Category: Call Direction: Operation Identifier:

System SA � CM System Comp.

SA � CM System Comp.

SA � CM System Comp.

csiInit

csiFinalize

csiReset

Class SA � CM System Comp.

SA � CM System Comp.

SA � CM System Comp.

SA � CM System Comp.

csiClassReg

csiClassDeReg

csiClassInit

csiClassFinalize

SA � CM System Comp.

SA � CM System Comp.

SA � CM System Comp.

SA � CM System Comp.

SA � CM System Comp.

SA � CM System Comp.

SA � CM System Comp.

SA � CM System Comp.

csiConnDecodeOp

 csiConnOpen

 csiConnControl

 csiConnClose

 csiConnSend

csiConnCall

csiConnReply

csiConnRaise

Connection

SA � CM System Comp. csiConnTerminate

 104

A.1.1 Data types

The following abstract data types are used with the CM System Interface operations.

Table A-2: Data types at CM System Interface.

Type Identifier: Description:

CsiCharacterType This type can hold a single character value.

CsiCiOpIdType Each of the Connection Interface operations has a unique identifier at SA

and CM System implementation language level. This enumerated type

provides identifiers for the operations: csiCiOpenId , csiCiOpenedId ,

csiCiControlId , csiCiStatusId , csiCiCloseId ,

csiCiClosedId , csiCiDataId , and csiCiDataIndId .

NOTE: When a component sends a CI control category message (5.2

Connection Interface), the CM System Component uses csiCiOpenId ,

csiCiControlId , and csiCiCloseId values to determine which

operation is in question (A.1.2 Operations: csiConnDecodeOp()). When

a CM or CM Class wants to build a CI control category message with the

CM System Component provided operation cciEncodeCiCtrlOp()

(A.2.2 Operations), the values csiCiOpenedId , csiCiStatusId , and

csiCiClosedId are used to determine which message should be built.

The values csiCiDataId and csiCiDataIndId are not used in this

document.

NOTE 2: This type is of fixed length.

CsiClassDataType A value of this type contains CM Class specific configuration data of a

Connection Interface operation encoded in a class specific form. It contains a

length field, and the data field. The CM Class does the encoding and

decoding of the data, thus its contents are not visible to the CM System

Component.

CsiClassIfaceType A value of this type contains a method for accessing the CM Class Interface

operations of a class (see Table A-4). Depending on implementation

language, the method can be a function pointer array of the class operations,

or it can be an interface object that provides the class operations as its

methods.

 105

Table A-2: Data types at CM System Interface.

Type Identifier: Description:

CsiConnIdType Unique identifier for a connection. It contains fields String

componentInstString , String portNameString , and

CsiIntegerType portIndex , which contain values as explained in

Section 4.3.2. A special null value, csiNoConnId , can be used as the

value for non-existing connections. This special value contains zero length

componentInstString and portNameString values, and -1 as the

portIndex value.

CsiConnParamsType Base class type for the following types: CsiCtrlParamsType , and

CsiDataParamsType .

CsiCtrlParamsType Record with fields:

String csiClassId ,

CsiClassDataType csiClassData .

CsiDataCallType Record with fields:

TriSignatureIdType signatureId ,

TriParameterListType parameterList .

The both field types are specified in [T3TRI: s. 5.3.2]]. The values stored

into the fields are the parameters of the triCall() operation.

CsiDataMsgType A value of this type contains a TriMessageType sendMessage .

CsiDataParamsType Base class type for the following types: CsiDataMsgType ,

CsiDataSigType .

CsiDataRaiseType Record with fields:

TriSignatureIdType signatureId ,

TriExceptionType exception .

All the field types are specified in [T3TRI: s. 5.3.2], and the values stored

into the fields are the parameters of triRaise() operation

CsiDataReplyType Record with fields:

TriSignatureIdType signatureId ,

TriParameterListType parameterList ,

TriParameterType returnValue.

All the field types are specified in [T3TRI: s. 5.3.2], and the values stored

into the fields are the parameters of triReply() operation.

CsiDataSigType Base class type for the following types: CsiDataCallType ,

CsiDataReplyType , and CsiDataRaiseType .

CsiIntegerType This type can hold a single signed integer value of fixed length.

(continued from the previous page)

 106

Table A-2: Data types at CM System Interface.

Type Identifier: Description:

CsiOpIdType Each of the test case component initiated Connection Interface operations

has a corresponding CM System Interface operation. Each of these CSI

operations has unique identifier, which can one of the following:

csiConnOpenId , csiConnCloseId , csiConnControlId ,

csiConnSendId , csiConnCallId , csiConnReplyId , and

csiConnRaiseId .

Of these, the csiConnSendId , csiConnCallId ,

csiConnReplyId , and csiConnRaiseId , are used with the

cciConnData() operation to identify which particular operation is in

question.

CsiPortIdListType A list of values of type CsiPortIdType .

CsiPortIdType Record containing port name and port index fields of the

TriPortIdType .

CsiStatusType This type has two values: CSI_OK, and CSI_ERR. The CSI_OK value is

returned by the CSI operations, when the operation call was successful.

CSI_ERR is returned otherwise. In the case of CSI_ERR, the effect of the

operation call is the same as if it was never called.

String This type can hold a sequence of character values. When the implementation

language is C, char* can be used. In the case of Java,

java.lang.String can be used.

TriAddressType Type defined in TTCN-3 Runtime Interface standard [T3TRI: s. 5.3.2]. A

value of this type addresses an entity within the SUT. Its TTCN-3 Core

Language counterpart is the type address .

TriComponentIdType Type defined in TTCN-3 Runtime Interface standard [T3TRI: s. 5.3.1]. A

value of this type identifies a test case component.

TriPortIdListType Type defined in TTCN-3 Runtime Interface standard [T3TRI: s. 5.3.1]. A

value of this type contains a list of values of type TriPortIdType .

TriPortIdType Type defined in TTCN-3 Runtime Interface standard [T3TRI: s. 5.3.1]. A

value of this type identifies either a TSI port or a component port, depending

on the TRI operation in which it is used.

(continued from the previous page)

 107

A.1.2 Operations

The following procedure operations are specified at the CM System Interface.

csiInit (SA ���� CM System Component)

In: CsiPortIdListType controlPorts

List of the TSI ports that are used as the control ports by default. There has to

be at least one.

Return: CsiStatusType csiStatus

Status code of the operation call.

Purpose: This operation is used by the SA to initialize the CM System. During the

initialization, the CM System Component may initialize its internal data

structures and do memory allocations if required. As a parameter of this

operation the CM System Component receives a list of the ports that are used

as control ports. After the initialization, the CM System Component is ready

to accept csiClassReg() operation calls.

When: A) At the start-up procedures of the test executable. How the initialization

operation is called depends on the tool that produces the test executables from

the TTCN-3 modules.

 B) This operation can be called tool-independently during triExecute-

TestCase() operation, but the CM System Component is possibly

unnecessarily initialized at the beginning of every test case.

C) At the control part of a TTCN-3 module this can be called with TTCN-3

external function call or action statements, before any test cases are executed.

This is seen by the SA as triAction() or triExternalFunction-

Call() operation, from which this operation can be called. Because the

control part of a TTCN-3 module is optional, and the TCI Test Management

interface [T3TCI: s. 7.3.1] allows starting of test cases directly without

 108

executing the control part, it possible that the initialization is mistakenly

excluded by the test case executor. This approach is tool independent.

D) Another tool independent approach is to perform this operation during the

first test case of a test suite with an external function call or action statement.

It is also possible to use a special identifier for the test case (such as

tc_initCmSystem), so the SA knows by it to call this operation.

E) Yet another approach is that the SA is instructed to call this operation in

the preamble part of each test case.

The advantage of the alternatives in which the initialization is started from the

TTCN-3 language level is that the identifiers of the control ports of the used

TSI can be passed down to the CM System; the control ports do not have to

be fixed, they can vary between the test cases or test suites. The drawback is

that the test case user has to remember to do this.

csiFinalize (SA ���� CM System Component)

Purpose: With this operation the SA tells the CM System to shutdown. This consists of

calling the finalization operations of any present connection manager classes

and releasing of any dynamically allocated memory. After this operation no

connections to SUT exist, and no other operations than csiInit() can be

used.

When: A) During finalization procedures of the test executable, if such exist. This

approach is tool dependent.

 B) At the control part of a TTCN-3 module, like in the case of initialization.

This approach is tool independent.

 C) During triSAReset() operation. Problem with triSAReset() is

that is not visible to TTCN-3 language level. There is no corresponding

TTCN-3 statement, hence it may vary from tool to tool when this operation is

called. This approach is tool dependent.

 109

 D) In the last test case of the suite, the only purpose of which is to shutdown

the CM System. The test case identifier (such as tc_finCmSystem) can be

used to inform the SA that it should shutdown the CM System. This approach

is tool independent.

csiReset (SA ���� CM System Component)

Purpose: This operation is used to clear any connection related data from the CM

System (handlerMap , controlMap) and to close any possibly open

connections. The CM System Component calls the reset operations of every

registered class during this operation.

 This operation is blocking to the caller and will not return until all the

connections have been successfully closed and all connection related data has

been cleared.

When: During triSAReset() operation.

csiSetControlPorts (SA ���� CM System Component)

In: TriPortIdListType tsiPortList

List of the current TSI ports that are used as the control ports. There has to be

at least one in the list.

Return: CsiStatusType csiStatus

Status code of the operation call.

Purpose: This operation is used by the SA to tell to the CM System Component what

TSI ports exist in the current test case. The CM System Component processes

the input parameter tsiPortList , and checks from each port in the list if it

is of type CiCfgPort (defined in Section 5.2.2). If it is of the control port

type, then the CM System Component marks into some internal data structure

that the port should be treated as a control port. This operation also clears any

previously existing control port information.

 110

 Note: This operation can possibly be used only in a C implementation. Unlike

the C mapping of the TriPortId type, the Java language mapping does not

provide a method with which one could ask the type identifier of the port.

When: During triExecuteTestCase() , if it is wanted that the TSI control

port(s) can be different in every executed test case.

csiClassReg (SA ���� CM System Component)

In: String csiClassId

Class identifier of the to-be-registered class.

CsiClassIfaceType csiClassIface

Method for the CM System Component to call the class specific operations

described in A.2 CM Class Interface.

Return: CsiStatusType csiStatus

Status code of the operation call.

Purpose: This operation is used to register all the available CM Classes into the CM

System, after which the transmission means provided by them are present in

the system. A class is registered into the system by its name, which is the

same as the field name of the class in Ci<OperationName>Params

union type. The union types are defined in the Connection Interface (Table 5-

2, Figure 5-4). As the result of this operation, the CM System Component can

use csiClassIface to access the CM Class Interface operations of the

registered class.

When: After the csiInit() operation has been performed. The class information

can be stored in a configuration file from which it is passed to the CM System

Component with this operation, or the class information can be hard coded

into the function, which calls this operation.

 111

csiClassDeReg (SA ���� CM System Component)

In: String csiClassId

Class identifier of the to-be-removed class.

Purpose: With this operation it is possible to remove class information of a previously

registered CM Class from the CM System, if this is required for some reason.

After this operation the CM System Component has no knowledge on the

removed CM Class, hence the transmission means provide by the removed

class is not available anymore. This operation performs the CM Class

Interface operation cciClassFinalize() to the class.

When: When the class has been first registered into the system with the

csiClassReg() operation.

csiClassInit (SA ���� CM System Component)

Return: CsiStatusType csiStatus

Status code of the operation call.

Purpose: With this operation the CM System Component is instructed to call the class

specific initialization operations of every registered CM Class. After this, the

classes are ready to provide connection managers of their kind.

When: After all the classes have been registered with the csiClassReg()

operation.

csiClassFinalize (SA ���� CM System Component)

Purpose: This operation is opposite to the Class Initialize function. All the resources

reserved by the registered connection manager classes are freed by the system

by calling their class specific finalization operations.

When: This operation is automatically called from the csiFinalize operation.

The SA can also call this explicitly, if the classes are wanted to be finalized

separately from the whole CM System.

 112

csiConnDecodeOp (SA ���� CM System Component)

In: CsiConnIdType csiConnId

The SA derives this value from the triSend() operation parameters as

shown in Figure 4-7. In the case the triSend() operation call is a result of

a test case calling the ciOpen() , the ciControl() , or the ciClose()

operation, the value of csiConnId identifier a control connection;

otherwise it identifies a data connection.

TriMessageType sendMessage

Encoded control data in the format of CmSysControlMessage , or non-

control data in any user specified format.

Out: CsiOpIdType csiOpId

Identifier of the resulting CSI operation.

CsiConnIdType csiDataConnId

I dentifier of the data connection that will be the target of the CSI operation

specified by the output parameter csiOpId .

CsiConnParamsType csiConnParam

Contains a parameter value for the csiConn*() operation, that is identified

by the output parameter csiOpId .

Return: CsiStatusType csiStatus

Status code of the operation call. The return value is CSI_ERR, if the to be

decoded data could not be decoded, or if the CSI System has not been

initialized. CSI_OK is returned otherwise.

Purpose: When a message-based Connection Interface operation is performed in a test

case, that is seen as a triSend() operation at the TRI interface.

CsiConnIdDecodeOp() is used to decode the corresponding CSI

operation from the sendMessage parameter of the triSend() operation

(see MSC diagrams B.1, B.2, B.4). The decoding is done by the CM System

Component, because the used transfer syntax (CmSysControlMessage ,

 113

Table 5-3) is an internal matter to the CM System, and it is wanted that the

CM System is independent from the SA implementation.

If the port identifier within the in-parameter csiConnId is identified as one

of TSI data ports by this operation, then the sendMessage is not decoded,

because it contains only user data, which should be delivered as it is to the

SUT. The resulting CSI operation in this case is csiConnSend() , thus the

output parameter csiOpId is set to value csiConnSendId , the output

parameter csiDataConnId is set to the same value as the input parameter

csiConnId has, and the output parameter csiConnParam is set to a value

of type CsiDataMsgType , which contains the in-parameter

sendMessage .

If the port identifier within the in-parameter csiConnId is identified as one

of the control ports, then this operation decodes the sendMessage , which

contains data in the format of CmSysControlMessage (Table 5-3). The

following information is decoded:

CsiCiOpIdType ciOperationId

String tsiPortName

CsiIntegerType tsiPortIndex

String csiClassId

CsiClassDataType csiClassData

Based on this information and the in-parameter csiConnId , the values for

out-parameters are determined. The resulting CSI operation and the value of

out-parameter csiOpdId depend on the decoded ciOperationId value

according to the table below:

Table A-3: Mapping from the CI operations to the CSI operations.

ciOperationId value Resulting CSI-op. Corresponding csiOpId value

csiCiOpenId csiConnOpen() csiConnOpenId

csiCiControlId csiConnControl() csiConnControlId

csiCiCloseId csiConnClose() csiConnCloseId

 114

For example, if the decoded ciOperationId value is equal to

csiCiOpenId , the out-parameter csiOpdId is set to value

csiConnOpenId , and based on this value the SA knows to call the CSI

operation csiConnOpen() .

The output parameter csiDataConnId is built from the decoded

tsiPortName and tsiPortIndex values, and from the

compInstString field of in-parameter csiConnId (Figure 4-7 shows

the contents of the CsiConnId type). If this built value equals to the special

value csiNoConnId , then the test case component that sent the

sendMessage did not specify any data port. This means that it wants to

have a control connection without any data connections with the class

specified by the decoded csiClassId value. In any case, the value of the

output parameter csiDataConnId is built it this manner.

The out-parameter CsiConnParamsType csiConnParam is set to

contain the decoded csiClassId and csiClassData stored into a value

of type CsiCtrlParamsType . (CsiConnParamsType is the base type

for the type CsiCtrlParamsType .)

After this operation, the SA knows which CSI operation it should perform

(csiOpId), what data connection the operation concerns

(csiDataConnId), and what other parameters the operation has

(csiConnParam).

When: During triSend() operation, that is executed as a result of a message-

based Connection Interface operation at the TTCN-3 language level. This

operation may not be called from the triCall() , the triReply() , or the

triRaise() operation, because the CM System Interface operations result

from message-based Connection Interface operations only.

 115

csiConnOpen (SA ���� CM System Component)

In: CsiConnIdType csiCtrlConnId

Identifier of the control connection that is used for controlling the data

connection, which is identified by the in-parameter csiDataConnId . The

value of the csiCtrlConnId is derived by the SA from the triSend()

operation’s in-parameters tsiPortId and componentId . This is the

same value the SA used as the input parameter csiConnId of

csiConnDecodeOp() .

CsiConnIdType csiDataConnId

Identifier of the data connection that should be opened. This is the same value

that the SA received as the csiDataConnId out-parameter of the

csiConnDecodeOp() operation. In the case a test case component has no

data ports, i.e. it does not want to open a data connection, csiDataConnId

has the special value csiNoConnId .

CsiCtrlParamsType csiCtrlParams

This value contains identifier of the used CM Class and encoded parameter

data for the class. The parameter data is only meaningful to the CM that is

handling the connection, thus the CM System Component passes the

parameter data to the CM without trying to interpret it. This value is the same

value the SA received as out-parameter csiConnParam of

csiConnDecodeOp() call.

TriAddressType sutAddress

This is the sutAddress value that was received by the SA as a parameter of

the triSend() operation. This parameter value is meaningless to the SA

and to the CM System Component, but it may be used by the CM Class to

determine the SUT end-point of the connection.

Return: CsiStatusType csiStatus

Status code of the operation call. This value is CSI_ERR, if the CM System

Component is unable to handle the operation request due to non-initialized

 116

CM System Component, non-existing CM Class, insufficient resources, or

due to any other reason. CSI_OK is returned otherwise.

Purpose: With this operation the SA can request the CM System to open a new

connection as the result of the Connection Interface ciOpen() operation,

which has been performed in a test case. The CM System Component starts a

new connection manager to handle the connection, by using the CCI interface

operation cciConnOpen (MSC diagram B.1).

 The opened connection can be either a data connection, or a stand-alone

control connection. If the input parameter csiDataConnId contains value

other than csiNoConnId , then a data connection is opened, and it is

controlled by the control connection identified with csiCtrlConnId . If the

csiDataConnId parameter value is equal to csiNoConnId , then a stand-

alone control connection is opened.

The CM System Component stores the mapping from the csiCtrlConnId

parameter value to the csiDataConnId parameter value into its

controlMap , to know which data connection is controlled by which control

connection (Figure 4-8). This information is needed by the System

Component to be able to terminate all the data connections related to the

control connection, in the case the SA orders to do so by calling

csiConnTerminate() .

From the input parameter csiCtrlParams the System Component gets the

identifier (csiClassId) of the class, whose cciConnOpen() it should

call to request the class to create a new CM to handle the connection. As the

result of successful CM Class Interface cciConnOpen() call, the System

Component receives the cciCmId , which identifies the CM, that handles the

connection (A.2.2 Operations contains more details on the CM Class Interface

Operations).

If the input parameter csiDataConnId has the value of csiNoConnId ,

meaning that no data connection is specified, the System Component stores

 117

the mapping from csiCtrlConnId to (csiClassId , cciCmId)–pair

into its handlerMap data structure (Figure 4-8). Otherwise, the System

Component stores the mapping from the csiDataConnId value to

(csiClassId , cciCmId)–pair.

After this, if the csiDataConnId contained a value other than

csiNoConnId , the System Component knows which CM handles this

opened data connection. Other wise it knows which CM handles the stand-

alone control connection identified by csiCtrlConnId .

This operation returns once the CM System Component has determined,

whether it is capable of requesting a class to create a new CM for the

connection. This does not necessarily mean that the CM System Component

requests a CM Class to create a new CM during this operation, since this

operation call may be buffered and handler later by the CM System

Component (A.2.2 Operations explains buffering further).

When: When a new connection is requested to be opened in a test case with the

ciOpen() operation of Connection Interface, that is seen as this operation at

the CM System Interface. MSC diagram B.1 shows how the operation

propagates through the interfaces.

csiConnControl (SA ���� CM System Component)

In: CsiConnIdType csiCtrlConnId

This is the same value the SA used as the input parameter csiConnId of

csiConnDecodeOp() .

 CsiConnIdType csiDataConnId

Identifier of the data connection that should be controlled. This is the same

value the SA received as the csiDataConnId output parameter of

csiConnDecodeOp() .

CsiCtrlParamsType csiCtrlParams

This value is used as in csiConnOpen() operation, and it was received by

 118

the SA as the output parameter csiConnParams of

csiConnDecodeOp() .

TriAddressType sutAddress

The sutAddress that the SA received as a parameter of the triSend()

operation.

Return: CsiStatusType csiStatus

Status code that is used in the same way as in csiConnOpen() .

Purpose: With this operation the CM System Component is instructed to pass a control

message to a connection manager. The control message may for example ask

a connection manager to report its status to a test case component, to

configure a sub-connection for a particular sutAddress value, or to modify

certain parameters of the connection.

 The CM System Component uses the handlerMap data structure to

determine the identifier of the connection manager (cciCmId) to which the

control message should be delivered (Figure 4-8). Since the handlerMap

contains mappings from values of type CsiConnIdType to

(csiClassId , cciCmId)–pairs, it depends on the values of the input

parameter csiDataConnId and csiCtrlConnId which one of them is

used as the connection identifier to find the matching (csiClassId ,

cciCmId)–pair. If csiDataConnId has the value of csiNoConnId ,

then csiCtrlConnId is used to find the right pair. Otherwise,

csiDataConnId is used.

 The CM System Component uses cciConnControl() of the class

csiClassId to pass the control request to the right connection manager.

 When: When an existing data connection or a stand-alone control connection is tried

to be controlled in a test case with the ciControl() operation, that is seen

as this operation at the CSI-interface. MSC diagram B.2 illustrates the how

the operation propagates through the interfaces.

 119

csiConnClose (SA ���� CM System Component)

In: CsiConnIdType csiCtrlConnId

This is the same value the SA used as the input parameter csiConnId of

csiConnDecodeOp() .

 CsiConnIdType csiDataConnId

Identifier of the data connection that should be closed. This is the same value

the SA received as the csiDataConnId output parameter of

csiConnDecodeOp() .

CsiCtrlParamsType csiCtrlParams

This value is used as in csiConnOpen() , and it was received by the SA as

the output parameter csiConnParams of csiConnDecodeOp() .

TriAddressType sutAddress

This is the sutAddress value that was received by the SA as a parameter of

the triSend() operation. The value is meaningless to the SA and to the

CM System Component, but it may be used by the CM Class to determine

what is the SUT end-point of the connection that will be closed.

Return: CsiStatusType csiStatus

Status code that is used in the same way as in csiConnOpen() .

Purpose: With this operation the CM System Component is instructed to close a

connection. The CM System Component starts the closing procedures by

calling cciConnClose() operation of the class interface. For the

cciConnClose() call the CM System Component needs to know the

identifier of the CM (cciCmId) that is handling the connection, and which

CM Class is in question (csiClassId). Identically to

csiConnControl() operation, the CM System Components uses the

handlerMap data structure to find the right (csiClassId , cciCmId)

pair, by using either the input parameter csiCtrlConnId or

 120

csiDataConnId as the key, depending on whether the csiDataConnId

is equal to constant csiNoConnId or not (Figure 4-8).

After calling cciConnClose() , the CM System Component can remove

the csiDataConnId to (csiClassId , cciCmId)–pair entry from its

handlerMap , if csiDataConnId is not equal to constant

csiNoConnId . Otherwise the csiDataConnId to (csiClassId ,

cciCmId) entry is removed (Figure 4-8). The CM System Component also

removes from its controlMap the mapping entry between

csiCtrlConnId and csiDataConnId .

NOTE: The SA may not remove the entries corresponding to

csiCtrlConnId and csiDataConnId from its tsiMap- data structure.

These entries are still needed by the CM to acknowledge to the test case

component when it has closed its connection with the SUT. This is explained

in Section 5.2 Connection Interface:ciClosed() and in A.3 Mapping

Interface.

When: When an existing data connection is closed in a test case with the Connection

Interface operation ciClose() , that is seen as this operation at the CSI

interface. MSC diagram B.4 shows how the operation propagates through the

interfaces.

CsiConnTerminate (SA ���� CM System Component)

In: CsiConnIdType csiConnId

SA generated identifier for the connection that should be terminated.

String reason

A string containing the termination reason. It can be for example “unmap”.

Purpose: This operation is used by the SA to instruct the CM System to forcefully

terminate a connection and the connection manager handling it. As the result,

all the buffered data related to the connection is immediately discarded and

the connection manager is terminated.

 121

If the csiConnId is an identifier of a control connection, then all the related

data connections are also terminated (csiConnId contains identifier of a

port, and the CM System Component knows which ports are control ports,

hence it knows if csiConnId identifies a control connection). The CM

System Component can use controlMap to determine what are the

identifiers of the data connections to be terminated.

The identifier of the CM handling the connection(s) and its class can be found

from handlerMap . The CM System Component terminates all the related

connections by calling cciConnTerminate() operation for each of them

(see A.2.2 Operations for more details on calling the CM Class Interface

Operations).

The termination reason string reason is passed by the CM System

Component to the CM that is handling the connection, which in turn may

notify a test case component about termination of the connection with a report

message including the reason string.

After calling cciConnTerminate() , the CM System Component clears

the entries corresponding the identifier csiConnId from its handlerMap

and controlMap .

When: The difference between this and csiConnClose() operation is that this

operation is initiated by the SA as a result of triUnmap() operation, or if

the SA somehow detects an error that affects the connection. MSC diagram

B.6 shows the operation sequence this operation.

Note: This operation is always called when a component unmaps its port from

a TSI port, even if the connection using the TSI had been properly closed. In

this case the handlerMap has no entry for the csiConnId parameter

value, thus this operation returns without calling the cciConn-

Terminate() operation.

 122

csiConnSend (SA ���� CM System Component)

In: CsiConnIdType csiDataConnId

Identifier of the data connection via which a message should be sent. This

value is the output parameter tsiDataPortId of csiConnDecodeOp()

operation.

CsiDataMsgType csiDataMsg

This value contains a sendMessage that should be delivered to the SUT. It

was received by the SA as the output parameter value csiConnParam of

csiConnDecodeOp() .

TriAddressType sutAddress

The sutAddress value that was received as a parameter of the

triSend() operation.

Return: CsiStatusType csiStatus

Status code of the operation call. This value is CSI_ERR, if the CM System

Component is unable to handle the operation request due to insufficient

resources, non-existing data connection, or due to any other reason that the

CM System Component can determine during the operation call. CSI_OK is

returned otherwise.

Purpose: With this operation the CM System is instructed to send a message to the

SUT. The CM System Component handles this by forwarding the request to

the CM that is handling the connection by calling cciConnData()

operation (see A.2.2 Operations for more details on calling the CM Class

Interface Operations). Identifier of the CM (cciCmId) and its class can be

found from the system’s handlerMap data structure by using

csiDataConnId as the key.

When: TTCN-3 send statement executed using a data port that is mapped with a

TSI port is seen as this operation at the CM System Interface. MSC diagram

B.7 illustrates how the operation propagates through the interfaces.

 123

csiConnCall (SA ���� CM System Component)

In: CsiConnIdType csiDataConnId

SA generated identifier of the data connection, for which a procedure call

should be performed. This value is derived by the SA from the tsiPortId

and componentId parameters of the triCall() operation.

CsiDataCallType csiDataCall

This value contains the signature of the procedure that should be called, and a

parameter list for it. This is derived by the SA from signatureId and

parameterList parameters of triCall() .

TriAddressType sutAddress

The sutAddress value that the SA received as a parameter of the

triCall() operation.

Return: CsiStatusType csiStatus

Return value that is used in the same way as in csiConnSend() .

Purpose: With this operation the CM System is instructed to perform a procedure call

at the SUT. The system handles this operation similarly to

csiConnSend() .

When: TTCN-3 call statement executed using a data port that is mapped with a

TSI port is seen as this operation at the CM System Interface. MSC diagram

B.8 shows how the operation propagates through the interfaces.

csiConnReply (SA ���� CM System Component)

In: CsiConnIdType csiDataConnId

SA generated identifier of the data connection, for which a procedure return

should be performed. This value is derived by the SA from the tsiPortId

and componentId parameters of the triReply() operation.

CsiDataReplyTypecsiDataReply

This value contains the signature of the procedure that should return,

 124

parameter list for it, and a return value of the procedure. This is generated by

the SA from the signatureId , parameterList , and returnValue

values that it received as parameters of triReply() .

TriAddressType sutAddress

The sutAddress that was received as a parameter of the triReply()

operation.

Return: CsiStatusType csiStatus

Return value that is used in the same way as in csiConnSend() .

Purpose: With this operation the CM System is instructed to perform a procedure-

return at the SUT. The system handles this operation similarly to

csiConnSend() .

When: TTCN-3 reply statement executed using a data port that is mapped with a

TSI port is seen as this operation at the CM System Interface. MSC diagram

B.8 shows how the operation propagates though the interfaces.

csiConnRaise (SA ���� CM System Component)

In: CsiConnIdType csiDataConnId

SA generated identifier of the data connection, for which a procedure

exception raise should be performed. This value is derived by the SA from the

tsiPortId and componentId parameters of the triRaise()

operation.

CsiDataRaiseType csiDataRaise

This value contains the signature of the procedure that should raise an

exception, and a value for the exception, and it is generated by the SA from

signatureId , parameterList , and exception that it has received as

parameters of triRaise() .

 125

TriAddressType sutAddress

The sutAddress value that was received as a parameter of the

triRaise() operation.

Return: CsiStatusType csiStatus

Status code that is used in the same way as in csiConnSend() .

Purpose: With this operation the CM System is instructed to raise an exception at the

SUT. The system handles this operation similarly to csiConnSend() .

When: TTCN-3 raise statement executed using a data port that is mapped with a

TSI port is seen as this operation at the CM System Interface. MSC diagram

B.8 shows how the operation propagates though the interfaces.

A.2 CM Class Interface

The CM Class Interface contains the operations between the CM System Component and

the CM Classes. Implementation of the CM Class Interface –operations, in which CM

System Component is the caller, is class specific, but the interface is the same for every

class. When the classes are registered into the CM System, the CM System Component

stores into its csiClassReg for each class a method (Table A-2:

CsiClassIfaceType), with which it can the interface functions of the class (the

operations of Table A-4 in which CM System Component is the caller). These operations

Table A-4: Operations at CM Class Interface.

Category: Call Direction: Operation Identifier:

Class CM System Comp. � CM Class

CM System Comp. � CM Class

CM System Comp. � CM Class

cciInit

cciFinalize

cciReset

Connection CM System Comp. � CM Class

CM System Comp. � CM Class

CM System Comp. � CM Class

CM System Comp. � CM Class

CM System Comp. � CM Class

CM Class � CM System Comp.

cciConnOpen

cciConnControl

cciConnClose

cciConnData

cciConnTerminate

cciConnClosed

Encoding CM Class � CM System Comp. cciEncodeCiCtrlOp

 126

are used by the CM System Component to distribute the operation requests it receives

from the SA to the right CMs. The interface also provides an operation with which a CM

Class can notify the CM System Component about a situation, in which it has closed a

connection without the CM System Component requesting for it. To make the transfer

syntax of the Connection Interface operations (5.2.3 On transfer syntax and encoding)

invisible to the classes, the CM System Component provides a procedure with which the

classes can do the encoding of CI operations. All the operations are procedure calls.

A.2.1 Data types

The abstract data types defined in Table A-5 are specific to the CM Class Interface. All

the other used data types are defined at the CM System Interface (Table A-2).

A.2.2 Operations

It was required in Section 4.3.4, that the connection category operations of the CM

System Interface operations the CM System Component provides to the SA are non-

blocking. This can be guaranteed by having an operation buffer in the CM System

Component, in which the operation requests are buffered. The CM System Component

can contain several worker threads that process the requests stored in the buffer one by

one when they have time. Alternatively, the every CM Class could have a similar buffer

into the operation requests done by the CM System Component to the CM Class are

buffered.

In the case every CM Class implements their an own operation buffers, the

cciConn*() operations become non-blocking to the CM System Component.

Therefore, the CM System Component should call the cciConn*() operations directly

from csiConn*() operation invocations, without using its own buffer, in order to avoid

Table A-5: Data types at CM Class Interface.

Type Identifier: Description:

CciCmIdType Base-class type for class specific CM identifiers. This is used to hide

the differences of the CM identifiers used by different CM Classes;

one class might address its CM instances with a memory address

value, while another class uses integer or character string identifiers.

 127

double buffering. In the case the buffering is always done in the CM System Component,

then it is allowed that the cciConn*() operations are blocking to the CM System

Component. Regardless of the chosen buffering policy, the csiConn*() operations are

always non-blocking the SA.

The following procedure operations are specified at the CM Class Interface.

cciInit (CM System Component ���� CM Class)

Return: CsiStatusType status

Status code of the operation call. The return value is CSI_OK, if the class was

successfully initialized.

Purpose: This class specific operation is used to initialize the class in question. The

class may reserve memory dynamically, establish static connections with

SUT, or it may perform any other actions that has to be done by the class to

become usable.

When: The CM System Component calls this operation for every registered class

during the csiClassInit() operation.

cciFinalize (CM System Component ���� CM Class)

Purpose: This operation is opposite to the cciInit() operation. All the resources

reserved by the class are freed. The class must forcefully terminate any

possibly open connections.

When: The CM System Component calls this operation for every registered class

during the csiFinalize() operation, or for a single class when the

csiClassFinalize() is called.

cciReset (CM System Component ���� CM Class)

Purpose: This operation is used to clear all the connection related data and to terminate

any possibly existing connections.

 128

When: The CM System Component calls this operation for every registered CM

Class as the result of the csiReset() operation.

cciConnOpen (CM System Component ���� CM Class)

In: CsiConnIdType csiCtrlConnId

Identifier of the control connection that is used to control the data connection

identified by the input parameter csiDataConnId . This is the same value

as the corresponding input parameter of the csiConnOpen() operation.

CsiConnIdType csiDataConnId

Identifier of the connection that should be opened. This is the same value as

the corresponding input parameter of the csiConnOpen() operation.

CsiClassDataType csiClassData

Class specific configuration data in encoded form. This the same value that is

stored in the input parameter csiCtrlParams of the csiConnOpen()

operation.

TriAddressType sutAddress

Value that can be used to specify the SUT end point of the connection, if it is

not encoded within the csiClassData parameter value. This the same

value that is stored in the input parameter sutAddress of the

csiConnOpen() operation.

Out: CciCmIdType cciCmId

Class generated value that identifies the CM that handles the opened

connection. This value remains valid until CM System Component calls either

cciClose() or cciTerminate() operation, or until the CM Class

notifies the CM System Component with cciClosed() operation that the

connection has been closed. No other opened connection may have the same

cciCmId value.

Return: CsiStatusType status

Status code of the operation call. The return value is CSI_OK, if the class had

 129

enough resources to attempt to open a new connection and there were no

errors with the in-parameters of the operation.

Purpose: With this operation the CM Class is instructed to create a new connection

manager to handle the data connection which is identified by

csiDataConnId , and which controlled by the control connection identified

by csiCtrlConnId . As the return value of this operation, the CM System

Component receives the identifier of the new manager (cciCmId) that

handles the connection. This identifier is used in all the other CM Class

Interface connection operations to address the right CM.

If the value of csiDataConnId is equal to csiNoConnId then this

operation is interpreted by the receiving CM Class as a request to open a

stand-alone control connection. What this means is class dependent. The

stand-alone control connections can be used for example for starting and

controlling class provided server entities. An example of this is given in

Section 5.4.7 TCP server example, in which a single component takes care of

starting and stopping of a TCP server entity, and other components then join

with it to handle any connections that the SUT establishes with the server

entity.

Successful return from this operation does not indicate that the connection is

usable; it only indicates that the class understood the request and will process

it. The CM System Component updates its handlerMap to contain the

information, that the opened connection is handled by the CM, that is

identified by the value of the output parameter cciCmId .

Once the connection has been opened, the CM handling the connection

reports this to the test case component by performing ciOpened()

operation. If for some reason it cannot open the connection, it performs

ciClosed() operation, and it also notifies the CM System Component with

the cciConnClosed() operation to clear its data structures of any

connection related data.

 130

When: This operation is called as a result csiConnOpen() operation, which is

called as a result of ciOpen() operation of the Connection Interface. MSC

diagram B.1 shows how the operation propagates through the interfaces.

cciConnControl (CM System Component ���� CM Class)

In: CciCmIdType cciCmId

Identifier of the CM, that is handling the connection.

CsiClassDataType csiClassData .

Class specific configuration data in encoded form. This is the same value that

is stored in the input parameter csiCtrlParams of the

csiConnControl() operation.

TriAddressType sutAddress

Value that can be used to specify the SUT end point of the connection.

Return: CsiStatusType status

Status code of the operation call. Used in the same way as in

cciConnOpen() .

Purpose: With this operation the CM System Component component passes class

specific control data to the CM identified by cciCmId . The control data may

instruct the CM to modify the data connection related options, or it may

contain other class specific commands to the CM. What it does depends

completely on the CM Class.

When: This operation is called as a result of csiConnControl() operation,

which is called as a result of ciControl() operation of the Connection

Interface. MSC diagram B.2 shows how the operation propagates through the

interfaces.

 131

cciConnClose (CM System Component ���� CM Class)

In: CciCmIdType cciCmId

Identifier of the CM, that is handling the connection that should be closed.

CsiClassDataType csiClassData .

Class specific configuration data in encoded form. This is the same value that

is stored in the input parameter csiCtrlParams of the

csiConnClose() operation.

TriAddressType sutAddress

Value that can be used to specify the SUT end point of the connection.

Return: CsiStatusType status

Status code of the operation call. Used in the same way as in

cciConnOpen() .

Purpose: With this operation, the class is instructed to close the connection handled by

the CM, which is identified by cciCmId . As the result, the class starts

shutdown procedures for the connection. When they have finished and

connection with SUT has been closed, the manager handling the connection

acknowledges this to the component of the connection by performing the

ciClosed() operation of Connection Interface. The shutdown procedures

may include transmission of all the data in send-buffer of the connection

manager, and waiting for any data that has not yet been received, but is

expected, that should be delivered to the component. What is done depends on

class and its class specific parameters in csiClassData . The cciCmId

value becomes invalid to the caller (CM System Component) when this

operation returns.

Once the connection manager has closed the connection with SUT, it reports

this to the test case component by performing the ciClosed() operation.

 132

When: This operation is called as a result csiConnClose() operation, which is

called as a result of ciClose() operation of the Connection Interface. MSC

diagram B.4 shows how the operation propagates through the interfaces.

cciConnTerminate (CM System Component ���� CM Class)

In: CciCmIdType cciCmId

Identifier of the CM, that is handling the data connection which should be

terminated.

String reason

String containing the reason why the connection should be terminated.

Purpose: This operation is used for the special case, in which a CM is needed instructed

to forcefully shut down the connection it is handling and to discard

immediately all the connection related data.

The CM may try to send a ciClosed –indication (see 5.2.4 Operations) to

the component whose connection it is handling. If the termination cause was

that the component unmapped its control port, then this attempt by the CM

will fail, because the CM cannot get anymore the needed parameters from the

SA for a triEnqueueMsg() call by using the miLock() operation of the

Mapping Interface (see A.3 Mapping Interface), because the SA does not

have the information anymore.

When: This operation is called as a result csiConnTerminate() operation,

which can be a result of unmapping of the component port, which was being

used for a data or a control connection. In normal situation this operation is

never called, since the connections should be properly closed from the test

case with the ciClose() operation before the unmapping is done. If a

connection has been closed successfully, then the CM System Component

will not call this operation even if csiConnTerminate() is called. MSC

diagram B.6 shows how the operation propagates through the interfaces.

 133

cciConnData (CM System Component ���� CM Class)

In: CciCmIdType cciCmId

Identifier of the CM that is handling the connection.

CsiOpIdType operationId

Operation identifier.

CsiDataParamsType dataParams

Operation specific parameter.

TriAddressType sutAddress

Value that can be used to specify the SUT end point of the connection that

should be closed.

Return: CsiStatusType status

Status code of the operation call. Used in the same way as in

cciConnOpen() .

Purpose: With this operation the CM System Component requests the CM identified by

the cciCmId to the handle the CSI interface communication operation

identified by operationId . The operation can be one of the following:

csiConnSend , csiConnCall , csiConnReply , or csiConnRaise .

dataParams contains the parameters for the operation. If this operation

returns successfully, then the CM of the connection attempts to perform the

requested operation.

When: This operation is called from csiConnSend , csiConnCall ,

csiConnReply , and csiConnRaise operations. MSC diagrams B.7 and

B.8 show how the operation propagates through the interfaces.

cciConnClosed (CM Class ���� CM System Component)

In: CsiConnIdType csiCtrlConnId

Identifier of the control connection that is used to control the data connection

identified by the input parameter csiDataConnId .

 134

CsiConnIdType csiDataConnId

Identifier of the data connection that should be closed.

Purpose: With this operation a CM Class can indicate to the CM System Component,

that a previously opened connection has been closed. The CM System

Component can update its controlMap and handlerMap data structures

based on the input parameters. Figure 4-8 shows how the data structures and

identifiers are related.

The CM System Component removes from its controlMap the mapping

between the csiDataConnId and csiCtrlConnId .

If the value of csiDataConnId is other than the constant csiNoConnId ,

then the CM System Component uses the value of csiDataConnId to

remove the entry from handlerMap .

If the value of csiDataConnId is equal to constant csiNoConnId , then

the CM System Component uses the value of csiCtrlConnId to remove

the entry from handlerMap .

 When: This operation is called by the CM Class, or by one its CMs, when the

connection with the SUT has been closed without the CM System Component

requesting for it. Possible reasons are SUT terminated connection, failed

attempt to establish a connection with the SUT, or an error on transmission

path. This operation is always called before a CM Class or CM performs a

ciClosed() operation, which is not a confirmation to the ciClose()

operation, but is a negative acknowledgement to the ciOpen() operation or

an indication to the test case that a connection has been closed. The CM

System Component has to be notified about the closed connection before

notifying the test case component, to avoid the situation, in which the test

case component might be able to try to re-open the closed connection before

the CM System Component has cleared the old entry. Both of the connections

would have the same identifier in this error situation in the CM System

Component.

 135

Situations after which this operation may not be called are the following: the

CM System Component calls cciReset() , cciFinalize()

cciConnClose() , or cciConnTerminate() .

MSC diagram B.5 shows how the operation propagates through the interfaces.

cciEncodeCiCtrlOp (CM Class ���� CM System Component)

In: CsiCiOpIdType csiCiOpId

Identifier of the CI operation, for which a message is wanted to be encoded.

The value can be csiCiOpenedId , csiCiStatusId , or

csiCiClosedId .

String csiClassId

Identifier of the class calling this operation. This is the same identifier with

which the class was registered into the CM System Component (with

operation csiClassReg()), and which is used as the field name of this

class in the class field of the CI control operation messages (Definitions

can be found in Section 5.2.2 Type definitions).

CsiConnIdType csiDataConnId

Identifier of the data connection, for which the calling class wants to encode a

Connection Interface control category operation message (listed in Section 5.2

Connection Interface).

CsiClassDataType csiClassData

Class specific configuration data in encoded form. The calling CM Class has

done the encoding of the data.

Out: TriMessageType receivedMessage

A value containing an encoded CI interface control category operation

message in the form of CmSysControlMessage (defined in Table 5-3).

Purpose: With this operation the CM Classes can request the CM System Component

to encode a Connection Interface control message of type CiOpened ,

 136

CiStatus , or CiClosed , into the form of CmSysControlMessage .

This makes the transfer syntax of the control messages invisible to the CM

Classes, and each of the classes does not have to implement their own encoder

for the control messages, except for their class specific data part.

After calling this operation, the out-parameter value receivedMessage

can be sent by the caller to a test case component with the

triEnqueueMsg() operation.

NOTE: There exists no decode operation for the CM Classes, because the

decoding (excluding class specific part) of the incoming CI control messages

is done by the CM System Component within the csiConnDecodeOp()

operation.

When: This operation is called by a CM Class or a CM when it wants to create an

encoded CI control message to be sent to a component (MSC diagrams B.1,

B.3, B.4, B.5, B.6, and B.9).

A.3 Mapping Interface

Mapping Interface provides operations, with which the CM Classes and the CMs can

query from the SA the current TSI mapping information of a connection by a connection

identifier. The mapping information of a connection consist of a (TriPortId

tsiPortId , TriComponentIdType componentId)–pair, which can be used as

the parameter of a triEnqueue*() operation call.

The mapping information is stored into a single shared data structure called tsiMap in

the SA, instead of distributing copies of it to the CMs when new connections are being

created. The reason for this is that the port mappings may changed during a test case,

causing a copy of a (tsiPortId , componentId)–pair to become out of date. TRI

interface standard does not specify what is the result of calling triEnqueue*()

operations with invalid parameters. The used TTCN-3 tool may choose to ignore the

operation call without affecting the verdict of the test case, or it may set error test

verdict, or do something else. To avoid this situation with unknown results, it is required,

 137

that the TSI mapping information stored in tsiMap is not readable by a CM or CM

Class, when it is being modified by the SA, and it cannot be modified by the SA, when a

CM or CM Class is about to call a triEnqueue*() operation with a (tsiPortId ,

ComponentId)–pair.

The specified Mapping Interface operations provide the means with which a CM or CM

Class can signal to the SA, that it wants to reserve a (tsiPortId , componentId)–

pair from tsiMap into its use, or that it does not need the pair anymore. In addition to

this functionality, the implementations of the TRI interface operations triMap() and

triUnmap() have to be such that they take into account the reservations before

updating the information stored in tsiMap . If a (tsiPortId , componentId)–pair

has been reserved, then the SA must wait for the pair to become unreserved, until it may

modify the mapping information related to the pair and complete the TRI operation in

question.

The operations with which the SA handles the reservations and stores the mapping

information into the tsiMap are internal to the SA and outside the scope of this

document.

A.3.1 Data types

This interface has no own data types.

A.3.2 Operations

miLock (CM ���� SA)

In: CsiConnIdType csiConnId

Identifier of a connection, whose (tsiPortId , componentId)–pair is

wanted to be locked. The CM received this value when the connection was

opened.

Out: TriPortIdType tsiPortId

tsiPortId corresponding to the input parameter csiConnId .

 138

TriComponentIdType componentId

componentId corresponding to the input parameter csiConnId .

Return: CsiStatusType status

Status code of the operation. The value is CSI_OK, if the pair corresponding

to the csiConnId existed and was successfully reserved. CSI_ERR is

returned if there exists no entry for the csiConnId that could have been

reserved.

Purpose: With this operation a CM can retrieve and reserve from tsiMap the

tsiPortId and componentId values corresponding to the csiConnId .

The values remain reserved for the CM until it calls the miUnlock()

operation with the same csiConnId .

 If the values corresponding to csiConnId have already been reserved for an

other caller, this operations blocks until they have been released with the

miUnlock() operation.

The implementations of the TRI interface operations triMap() and

triUnmap() operations has to be such that if a CM has reserved a certain

(tsiPortId , componentId)–pair, and the TRI operation would have an

effect on this pair, then the TRI operation will block until the CM has released

the pair by calling the miUnlock() operation. Similarly, the miLock()

operation will block if the triMap() or the triUnmap() operation is

being called by the TE.

When: The CM calls this operation right before it is going to call a

triEnqueue*() operation. It also calls the miUnlock() operation right

after the triEnqueue * () operation has finished.

miUnlock (CM ���� SA)

In: CsiConnIdType csiConnId

Identifier of a connection, whose (tsiPortId , componentId)–pair is

 139

wanted to be unlocked. The CM received this value when the connection was

opened.

Purpose: With this operation a CM can unlock the (tsiPortId , componentId)–

pair identified by the input parameter csiConnId . The CM must have

locked the pair previously with the miLock() operation to prevent any

modifications to the mapping information for the duration of a

triEnqueue * () operation call.

When: The CM calls this operation right after its triEnqueue*() operation call

has returned, not to unnecessarily prevent the TE and the SA from doing any

possibly modifications to the mapping information.

 140

B MSC DIAGRAMS

This section contains selected message sequence chart diagrams, which illustrate how the

interfaces and their operations specified in Chapter 5 and Appendix A work together.

B.1 Open

This MSC diagram shows how a data connection is opened from the test case by a

component and what interface operations this results in. If the open procedure fails, then

the CM closes the connection as in MSC B.5 Closed, by notifying the CM System

Component and the test case component.

msc Open

:SA
:CmSystem

Comp.
:CmClass:TE:Component :SUT

controlPort .send(ciOpen(tsiDataPort, openParams)) to sutAddress

csiConnDecodeOp(ctrlConnId, sendMessage(CmSysControlMessage))

csiConnOpenId, dataConnId, csiCtrlParams(csiClassId , csiClassData))

csiConnOpen(ctrlConnId, dataConnId, csiCtrlParams(csiClassId, c siClassData), sutAddress)

cciConnOpen(ctrlConnId, dataConnId, csiClassData, sutAddress)

cciCmId

New CM is created or
assigned to handle the

connection.

Can be an activated alt-statement
default alternative, which handles
the acknowledgements to ciOpen
messages.

controlPort .receive(ciOpened)

triSend(componentId, tsiPortId, sutAddress, sendMessage(CmS ysControlMessage corresponding to ciOpen))

ciOpened(tsiDataPort, openedParams)

Open acknowledgement has
been received

tsiPortId contains the identifier of the TSI port,
that is mapped with controlPort .

CM System decodes the following information from sendMessage:
ciOperationId , tsiPortName , tsiPortIndex , classId, and classData.

dataConnId to cciCmId mapping
is stored into handlerMap .

ctrlConnId to dataConnId
mapping is stored into controlMap.

SA derives CsiConnIdType ctrlConnId from
TriPortIdType tsiPortId, and
TriComponentIdType componentId.

miLock(ctrlConnId)

tsiCtrlPortId , componentId

miUnlock(ctrlConnId)

Class and CM Specific operations to handle the requ est

Connection establishment

:CM

Connection is ready

csiConnOpenId is returned based on the decoded
ciOperationId value. This tells the SA which CSI-
operation to call, which is csiConnOpen() in this case.

dataConnId was generated by the CM System Comp.
from tsiPortName, tsiPortIndex, and the
componentIdString field of ctrlConnId .

cciEncodeCiCtrlOp(csiCiOpenedId , ownClassId, csiDataConnId,
csiClassData(openedParams))

cmSysControlMessage corresponding to ciOpened

The CM asks the CM System
Component to build a Connection
Interface operation message in the
transfer syntax form.

csiDataConnId contains the identifier of the TSI port of the
connection (tsiDataPort).

triEnqueueMsg(tsiCtrlPortId , sutAddress , componentId , receivedMessage (CmSysControlMessage))

 141

B.2 Control

This MSC diagram illustrates how a connection can be controlled, when it has been

successfully opened as shown in MSC B.1 Open.

msc Control

Status

:SA
:CmSystem

Comp.
:CmClass:TE:Component :SUT

controlPort .send(ciControl(tsiDataPort, controlParams)) to sutAddress

csiConnDecodeOp(ctrlConnId, sendMessage(CmSysControlMessage))

csiConnControlId, dataConnId, csiCtrlParams(csiClas sId, csiClassData))

csiConnControl(ctrlConnId , dataConnId, csiCtrlParams(csiClassId, csiClassData) , sutAddress)

cciConnControl(cciCmId, csiClassData, sutAddress)

triSend(componentId, tsiPortId, sutAddress, sendMessage(CmS ysControlMessage corresponding to ciControl))

tsiPortId contains the identifier of the TSI port,
that is mapped with controlPort .

CM System decodes the following information from sendMessage:
ciOperationId , tsiPortName , tsiPortIndex , classId, and classData.

SA derives CsiConnIdType ctrlConnId from
TriPortIdType tsiPortId, and
TriComponentIdType componentId.

csiConnControlId is returned because of the decoded
ciOperationId value. The SA knows to call
csiConnControl() because of the
csiConnControlId value.

dataConnId is generated by the CM System Component
from tsiPortName, tsiPortIndex, and the
componentIdString field of ctrlConnId .

Class and CM specific operations to handle the requ est

Control
(Control)

:CM

Opt

cciCmId corresponding to dataConnId can be found from
handlerMap, unless dataConnId is equal to constant
csiNoConnId. If dataConnId is equal to csiNoConnId,
meaning that no data port had been specified, the cciCmId
value is found from the handlerMap by using ctrlConnId
as the key.

 142

B.3 Status

This MSC diagram illustrates how a connection manager can send a status message

regarding a connection it is handling to the test case component that opened the

connection.

msc Status

:SA
:CmSystem

Comp.
:CmClass:TE:Component :SUT

Can be an activated alt-statement default alternative, which
handles the ciStatus messages.

controlPort .receive(ciStatus)

ciStatus(tsiDataPort, statusParams)

Status report has been received

miLock(ctrlConnId)

tsiCtrlPortId , componentId

miUnlock(ctrlConnId)

:CM

A connection has been opened as described in MSC Open.
The CM knows the dataConnId of the connection, and the ctrlConnId of the related control connection.

CM decides to send a
status report concerning a
connection it is handling.

cciEncodeCiCtrlOp(csiCiStatusId , csiClassId, csiDataConnId,
csiClassData(statusParams))

csiDataConnId contains the identifier of the TSI port of the
connection (tsiDataPort) .

ctrlConnId was passed to the class of the CM
when the connection was opened. If the CM does not
know it, it can ask it from its class.

cmSysControlMessage corresponding to ciStatus

The CM asks the CM System to
build a Connection Interface
operation message in the transfer
syntax form.

triEnqueueMsg(tsiCtrlPortId , sutAddress , componentId , receivedMessage (cmSysControlMessage))

 143

B.4 Close

This MSC diagram illustrates how connection is closed when this is requested by a test

case component.

msc Close

:SA
:CmSystem

Comp.
:CmClass:TE:Component :SUT:CM

controlPort .send(ciClose(tsiDataPort, closeParams)) to sutAddress

csiConnDecodeOp(ctrlConnId, sendMessage(CmSysControlMessage))

csiConnClose(ctrlConnId , dataConnId, csiCtrlParams(csiClassId, csiClassData) , sutAddress)

cciConnClose(cciCmId, csiCloseParam, sutAddress)

triSend(componentId, tsiPortId, sutAddress, sendMessage(CmS ysControlMessage corresponding to ciClose))

Class and CM specific operations to handle the requ est

This may include receipt of data from the SUT, and sending
of buffered messages to the SUT. What is done depends on
the instructions contained within the class specific data.

Close connection

Closing procedures have finished

Closing procedures

Can be an activated alt-statement default
alternative, which handles ciClosed
messages.

CM System decodes the following information from sendMessage:
ciOperationId , tsiPortName , tsiPortIndex , classId, and classData.

csiConnCloseId, dataConnId, csiCtrlParams(csiClassI d, csiClassData))

SA derives CsiConnIdType ctrlConnId from
TriPortIdType tsiPortId, and
TriComponentIdType componentId.

csiConnCloseId is returned based on the decoded
ciOperationId value. The SA knows to call
csiConnClose() by csiConnCloseId .

dataConnId is generated by the CM System from
tsiPortName, tsiPortIndex, and the
componentIdString field of ctrlConnId .

tsiPortId contains the identifier of the TSI port,
that is mapped with controlPort .

dataConnId to cciCmId mapping is removed from
handlerMap . Also, if this was the last data connection the
component had, then the related control connection entry is
removed from controlMap .

controlPort .receive(ciClosed)

ciClosed(tsiDataPort,closedParams), sutAddress

Closed indication has been
received

miLock(ctrlConnId)

tsiCtrlPortId , componentId

miUnlock(ctrlConnId)

cciCmId corresponding to dataConnId can be found from
handlerMap .

cciEncodeCiCtrlOp(csiCiClosedId , csiClassId, csiDataConnId,
csiClassData(closedParams))

cmSysControlMessage corresponding to ciOpened

The CM asks the CM System to
build a Connection Interface
operation message in the transfer
syntax form.

csiDataConnId contains the identifier of the
TSI port of the connection (tsiDataPort).

triEnqueueMsg(tsiCtrlPortId , sutAddress , componentId , receivedMessage (CmSysControlMessage))

 144

B.5 Closed

This MSC diagram illustrates how a connection is closed when this is initiated by a CM

Class or a CM, as result of failure to open a new connection or when an existing

connection is lost. The CM notifies first the CM System Component about the event, after

which it notifies the test case component.

msc Closed

:SA
:CmSystem

Comp.
:CmClass:TE:Component :SUT:CM

ciClosed(tsiDataPortId), sutAddress

controlPort .receive(ciClosed)
miLock(ctrlConnId)

tsiCtrlPortId , componentId

miUnlock(ctrlConnId)

cciEncodeCiCtrlOp(csiCiClosedId , csiClassId, csiDataConnId,
csiClassData(closedParams))

cmSysControlMessage corresponding to ciClosed

The CM asks the CM System to build a
Connection Interface control-operation
message in the transfer syntax form.

triEnqueueMsg(tsiCtrlPortId , sutAddress , componentId ,
receivedMessage(CmSysControlMessage corresponding t o ciClosed)

csiDataConnId contains the identifier of the
TSI port of the connection (tsiDataPort).

Connection manager detects
that either it cannot open a new
connection as requested by the
Component, or that an existing

connection with the SUT has been lost
without Component requesting for it.

cciConnClosed(csiCtrlConnId, csiDataConnId)
The CM System Component clears its
controlMap and handlerMap data
structures from the entries corresponding to
the input parameters.

Mapping data structures
updated

Can be an activated alt-statement default
alternative, which handles ciClosed
messages.

 145

B.6 Terminate

This MSC diagram illustrates how a connection is terminated by the SA, when a

component unmaps its port, for which it opened a connection, but not explicitly closed by

sending a ciClose message as in MSC B.4. csiTerminate() has no effect if there

are no open connections, and cciTerminate() is not called.

msc Terminate

:SA
:CmSystem

Comp.
:CmClass:TE:Component :SUT:CM

Component has a control port connection identified with ctrlConnId , and a data connection identified with dataConnId.
ctrlConnId is associated with port controlPort , and dataConnId is associated with port dataPort .

unmap(controlPort) or
 unmap(dataPort)

triUnmap(compPortId , tsiPortId)

csiTerminate(connId, reason=”unmap”)

cciTerminate(cciCmId, reason=”unmap”)

Class and CM specific operations to handle the requ est

Terminate

ciClosed(tsiDataPortId), sutAddress

[controlPort]

Alt (the unmapped port was dataPort)

(Terminate)

Loop (”every data connection related to the control connection is terminated”)

Class and CM specific operations to handle the requ est like above

No termination indications can be sent to the component,
because it is not reachable via the unmapped control port

cciTerminate(cciCmId, reason=”unmap”)

Can be an activated alt-statement default alternative, which
handles the acknowledgements to ciClosed messages.

controlPort .receive(ciClosed)

cciCmId corresponding to ConnId
can be found from handlerMap.

Identifiers of the data connections related to the
unmapped control connection can be found from
controlMap by using ctrlConnId as the key.

handlerMap and controlMap
are cleared from the entries
corresponding to the connection

Closing procedures have finished
miLock(ctrlConnId)

tsiCtrlPortId , componentId

miUnlock(ctrlConnId)

cciEncodeCiCtrlOp(csiCiClosedId , csiClassId, csiDataConnId,
csiClassData(closedParams))

cmSysControlMessage corresponding to ciClosed

The CM asks the CM System to build a
Connection Interface control-operation
message in the transfer syntax form.

triEnqueueMsg(tsiCtrlPortId , sutAddress , componentId ,
receivedMessage(CmSysControlMessage corresponding t o ciClosed)

csiDataConnId contains the identifier of the
TSI port of the connection (tsiDataPort).

handlerMap and controlMap are cleared from
the entries corresponding to the connection

 146

B.7 Message

This MSC diagram illustrates how a message is sent by a component via a data port, for

which it has previously opened a connection.

B.8 Procedure

This MSC diagram illustrates how a component performs a procedure call via a data port,

for which it has previously opened a connection.

msc Message

:SA
:CmSystem

Comp.
:CmClass:TE:Component :CM :SUT

dataPort .send(msg) to sutAddress

csiConnDecodeOp(tsiPortConnId, sendMessage(msg))

csiConnSendId, dataConnId, csiDataMsg(sendMessage(m sg))

csiConnSend(dataConnId, csiDataMsg(sendMessage(msg)), sutAddres s)

cciConnData(cciCmId, csiConnSendId,
csiDataMsg(sendMessage(msg)), sutAddress)

triSend(componentId, tsiPortId, sutAddress, sendMessage(msg))

msg

Class and CM specific operations to handle the requ est

Deliver msg

tsiPortId contains the identifier of the
TSI port, that is mapped with dataPort .

csiConnSend() is called because of the
return value csiConnOpenId.

cciCmId corresponding to
dataConnId can be found
from handlerMap .

dataConnId contains the same value as
the received tsiPortConnId.

The SA derives CsiConnIdType
tsiPortConnId from TriPortIdType
tsiPortId, and TriComponentIdType
componentId.

csiConnSendId is returned because
csiConnDecodeOp() recognizes the port identifier stored
in CsiConnIdType tsiPortConnId as one of the data
ports. The SA knowns to call csiConnSend() because of
csiConnSendId value

Depending on the implementation, it is possible, that the cciConnData() operation is called
from within csiConnSend() operation.

Depending on the implementation, the cciConnData() operation may enqueue the to-be-
sent message directly into a transmission buffer of the CM, without first passing it to the class,
which would forward it to its CM.

It is only required that the csiConnSend() is not a blocking operation to the SA.

msc Procedure

:SA
:CmSystem

Comp.
:CmClass:TE:Component :SUT:CM

dataPort .call(signatureId, parameterList) to sutAddress

This same scenario is used for the reply() and raise() port statements. The used corresponding CSI operations are csiConnReply() and csiConnRaise().

triCall(componentId, tsiPortId, sutAddress, signatureId, pa rameterList)

csiConnCall(dataConnId , csiDataCall(signatureId, parameterList), sutAddress)

cciConnData(cciCmId, csiConnCallId, csiDataCall, sutAddress)

Procedure call

Class and CM specific operations to handle the requ est

Make procedure call

cciCmId corresponding to dataConnId
can be found from handlerMap .

tsiPortId contains the identifier of the TSI
port, that is mapped with dataPort .

SA derives CsiConnIdType dataConnId from
TriPortIdType tsiPortId, and TriComponentIdType
componentId.

csiConnCall() operation is called directly without calling
csiConnDecodeOp(), because the TRI-operation is triCall ,
which is not used for passing control messages to the CM System.

Depending on the implementation, it is possible, that the cciConnData() operation
is called from within csiConnCall() operation.

Depending on the implementation, the cciConnData() operation may enqueue the
to-be-performed procedure operation directly into a transmission buffer of the CM,
without first passing it to the class, which would forward it to its CM.

It is only required that the csiConnCall() is not a blocking operation to the SA.

 147

B.9 Receipt of a message or procedure operation

This MSC diagram illustrates how both message- and procedure-based communication

events concerning a data connection are enqueued by the CM to the test case component

that opened the data connection.

msc Receipt

:SA
:CmSystem

Comp.
:CmClass:TE:Component :SUT:CM

msgdataPort .receive(expectedMsg)

msg, sutAddress

[procedure based communication]

Alt (message based communication)

Procedure call

triEnqueueCall(tsiDataPortId, sutAddress, componentId, signatureId , parameterList)

dataPort .getcall(expectedSignatureId, expectedParameterList)

signatureId, parameterList,
sutAddress

Procedure return and exception raise are handled similarly with getreply(),
triEnqueueReply() , and with catch() , triEnqueueException() operations.

triEnqueueMsg(tsiDataPortId , sutAddress , componentId , receivedMessage (msg))

miLock(dataConnId)

tsiDataPortId , componentId

miUnlock(dataConnId)

dataConnId was passed to the class of the CM when the connection was
opened. If the CM does not know it, it can ask it from its class.

miLock(dataConnId)

tsiDataPortId , componentId

miUnlock(dataConnId)

SUT is blocked unti
corresponding

dataPort .reply()
statement is executed

in the test case

