

Automated Interoperability Testing with TTCN-3

Experiences from ETSI's STF 370 project

TTCN-3 User Conference Asia November 18th 2009 Bangalore, IN

Stephan Schulz
Theofanis Vassiliou-Gioles
© ETSI 2009. All rights reserved

Outline

- Why is interoperability testing of interest to ETSI?
- ☐ How can we make interoperability testing for effective?
- □ About the ETSI STF 370 project
- □ A methology for automated interoperability testing
- Interoperability testing with TTCN-3
 - > About the IMS case study
 - ➤ About TTCN-3 IMS IOT test system design
 - > Findings & Stastics from the 3rd ETSI IMS Plugtest
- □ Conclusion

Rise of Interoperability Testing

- □ Classical conformance testing may not be appropriate for every technology
 - Can be costly to develop
 - > Does not guarantee interoperability of tested products
- ☐ Bi-lateral testing and interoperability events are increasingly accepted as a solution to improve interoperability
 - ➤ ETSI interoperability test specifications & <u>Plugtests™</u> for a wide range of technologies including IMS, HDMI, IP, VoIP, RFID, grid, etc
 - > OMA interoperability test specifications & testfests for enablers
 - > WiMax network infrastructure interoperability testbed
 - > Over 700.000 hits with Google, more than 1,3 million hits with Yahoo
- ☐ BUT: (pure) interoperability testing does not answer all questions
 - > Does not guarantee that products follow standards
 - ➤ Interoperability is not transitive relation and may be elusive!

Interoperability Testing: the ETSI approach

- □ Integrate conformance checking with interoperability testing!
 - ➤ In practice achieved by recording traces at standardized interfaces during each interoperability test
- ☐ Get the best of both worlds
 - Vendors get instant feedback about the interoperability of their product with others
 - > ETSI gets an idea about the conformance of products to standards
- □ Requires additional test specification development work, i.e., identification and association of conformance checks
- □ Does not replace need for conformance testing
 - > Inherent limitation in IOT to expose all standardized behavior

Interoperability Testing Today

- ☐ Interoperability testing means different things to different people
 - > Attend an event
 - > Test whatever with whoever whenever you want (ad-hoc)
 - > Scheduled test sessions (attempting to cover all possible pairings of different participating products)
 - > Execution of agreed test list in each test session
 - > Validation of execution traces against standards
 - > As well as various combinations of the above
- Majority of interoperability testing and validation is performed manually
 - Labor intensive
 - Does not scale
 - > Error prone
 - > Frequently inconsistent

Example: Test Effort for ETSI's 1st IMS Plugtest

□ Background

- ➤ A 4 day interoperability event intended to assess the interoperability of IMS core networks at network-to-network (NNI) interface
- > 23 different interoperability tests
- > 6 IMS core network implementations tested all against each other
- > 30 recorded test sessions (A -> B as well as B -> A)
- > 482 test execution traces to be evaluated (SIP message flows)

☐ Effort spent on test execution & analysis

- > About 180 h of interoperability testing (46%)
- > About 204 h of manual analysis of execution traces (54%)
 - With a lot of work being done after 9pm each day ...
- Sums up to total effort of 384 h / 48pd (100%) related to testing!

How can we make IOT more effective?

- ☐ Automate IOT as much as possible
 - > Example: Automate interoperability trace checking
 - ☐ Reduce cost and time
 - ☐ Increase consistency of results
- ☐ Reuse constructs from existing test frameworks
 - > Profit from investments already made
- ☐ Use industrial grade test automation tools
 - > Benefit from well accepted processes, workflows and tools

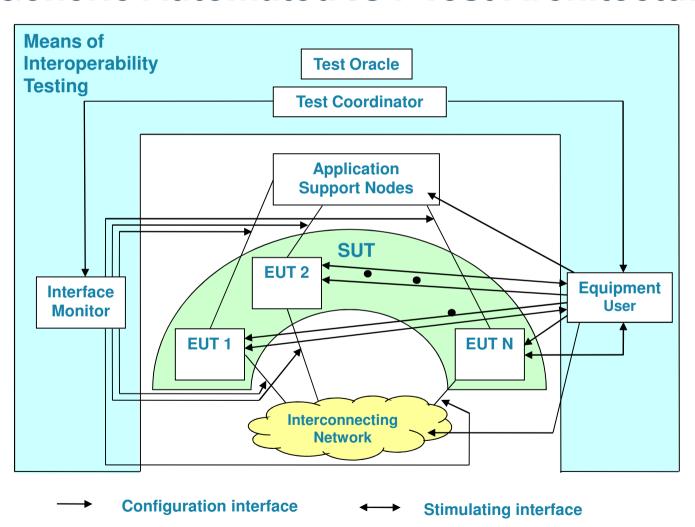
Use TTCN-3 as the unifying test language to drive automated interoperability testing!

STF 370 – Automating interoperability testing

- □ ETSI Project funded by European Commission and ETSI
 - Objective is to extend existing ETSI interoperability testing concepts with automation and in context of distributed systems
- Main stakeholders
 - > ETSI TC Methods for Testing and
 - > ETSI TC IMS Network Testing
 - > ETSI TC Grid
 - > B2B community (mainly around HL7)
 - > TETRA Association
 - WiMax Forum (NWIIOT)
- □ Further signalled interest
 - > IPv6 community
 - > ITS community
 - > Testing labs

Project Overview

- □ Planned duration Jan 2009 to Jun 2010
- □ Involves 12 experts with various background led by ETSI CTI
- Methodology and Framework for automated IOT
 - ➤ Output is ETSI Guide 202 810 (independent of TTCN-3)
- ☐ IMS case study based on use of TTCN-3
 - > Application of automated IOT concepts in context of IMS
 - **▶** Basis was IMS IOP test specification for 3rd ETSI IMS Plugtest
 - ➤ Output is TTCN-3 test suite & documentation, TCI SIP codec & TRI adapter implementation, and report on IMS Plugtest experience
 - > Validation of TTCN-3 test system and IOT concepts at IMS Plugtest!
- □ Dissemination
 - White paper & training material (in 2010)
 - > Presentation to TETRA Forum and at T3UC 2009 + T3UC Asia 2009



About automated IOT methodology & framework

- □ Analysis of automated IOT in various contexts
 - > IOT in IMS, WiMax, IPv6, HL7, ROHC, IPTV, WiMedia, SIP VoIP, etc.
- ☐ Methodology extends ETSI's generic approach to IOT (EG 202 237)
 - > Adds aspects of automation and test system implementation
- Main points captured in this document (EG 202 810)
 - Independent of technology to be tested
 - > Independent of testing language
 - Collection of key terminology
 - > Separation of verdicts for end-to-end and conformance assessment
 - > Discussion of limitations and feasible degree of automation
 - > Controllability of Equipment Under Test (EUT) interfaces
 - > Definition of generic means of interoperability testing
 - > Definition of process for IOT test system development

Generic Automated IOT Test Architecture

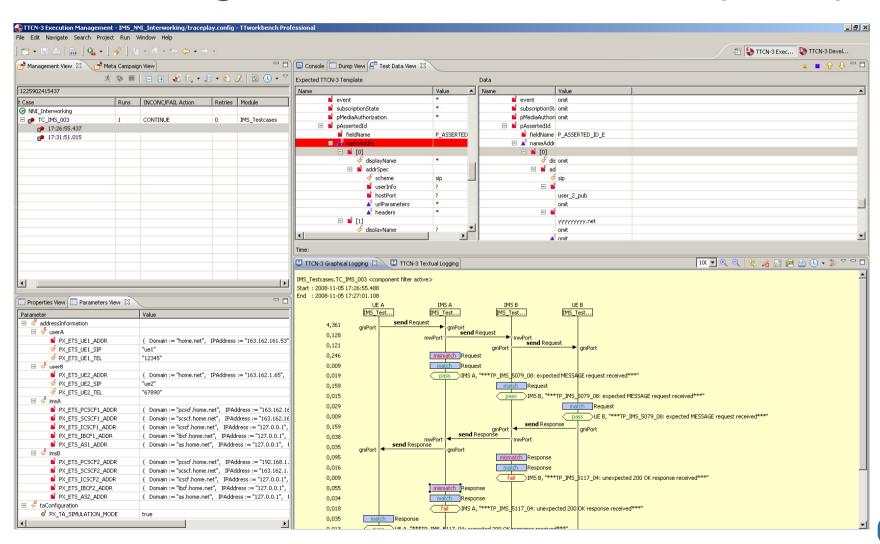
Monitoring interface

About TTCN-3 based IMS case study

- □ Designed and implemented a TTCN-3 based framework for IMS interoperability testing
 - Library based design
 - LibCommon, Liblot, LibSip, LibIms, LibUpperTester plus AtsImslot
 - > Separation of individual EUT information and EUT pairings
 - > Support for en/disabling of interface checks upon need
 - > Separation of conformance and interoperability verdict management
 - > Support for live vs. offline interoperability test execution
 - > Reuse of TTCN-3 SIP/SDP constructs from conformance test suites
- ☐ Implemented 50 IMS IOT TTCN-3 tests within framework
 - Development lead to discovery of a number of issues in the IMS IOP test specification (mainly related to conformance checks)
 - Included some basic test validation

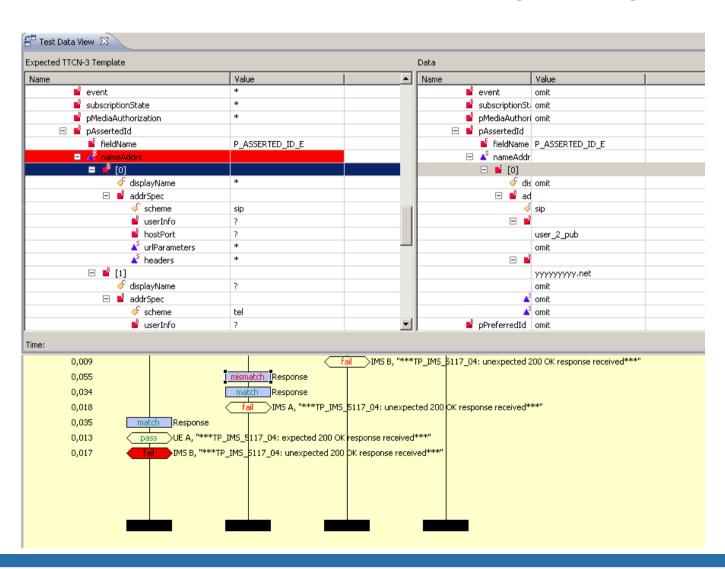
About TTCN-3 based IMS case study (contd.)

- ☐ Implemented TCI SIP and SDP codecs
 - ▶ Based on open source IRISA t3dev codec C++ development kit
 - > Excludes checking of XML message bodies
 - > Includes codec test framework
 - Reusable beyond interoperability testing!
- ☐ Implemented TRI Upper tester and PCAP test adapter
 - > Based on open source IRISA t3dev codec C++ development kit
 - Protocol independent, extensible design including test adapter configuration protocol
 - ➤ Also adapted Testing Tech Trace Player adapter to new interface
- ☐ TTCN-3 test system mainly validated at IMS Plugtest
 - Used two different commercial TTCN-3 compilers: Testing Tech TTWB and Elvior MM



Findings & Statistics from the IMS Plugtest

- □ 3 test engineers were validating tests and checking 317 interoperability test executions from 54 test sessions
 - > Included voluntary contributions from Testing Tech and Elvior
- ☐ A number of design decisions proved very helpful to speed up test execution
 - > Example: Separation of EUT information, template design, etc
 - > Significant improvement over first TTCN-3 tool from 2nd IMS Plugtest
- ☐ After test validation analysis achieved speed of 5 test sessions per day per test engineer
 - Includes manual verification of all fail verdicts!
 - > Total effort: 3*8*4 = 96 h(!) compared to 204 h manual work!
- ☐ Code really worked with different TTCN-3 tools!
 - Collected feedback on further TTCN-3 tool improvements to even further speed up trace analysis



Checking of Failed Tests in Practice (TTWB)

Mismatches in Practice (TTWB)

Conclusions

- ☐ Interoperability testing is an accepted way to reduce interoperability problems
- Manual interoperability testing is time consuming and error prone and therefore expensive
- □ Automation of interoperability trace checking can reduce costs by more than 50 % compared to manual validation
 - > Standardized test methodology
 - > Reusable TTCN-3 test framework
 - > Off-the-shelf TTCN compilers
- ☐ Standards, tools, and people are available today

Road Ahead

- ☐ Finalization of methodology, TTCN-3 based IMS Architecture, Plugtest experience report for ETSI publication
 - > Will include also TTCN-3 code
- Start of work on training material and white paper
 - > Expected to be finished latest by summer 2009
- □ SIP & SDP codecs, IOT adapter, and corresponding design documents are planned to be made available via open source project
- □ Target for next IMS Plugtest automatic execution of interoperability tests
 - > Augment a commercial IMS client to be controllable via TTCN-3

THANK YOU!

Questions?