TTEnN 3 TTCN-3 Users conference Asia 2007
Testing & ?raﬁmm”\rm; BEijing, China

Telelogic

Telelogic Tester™

Managing Concurrency and Parallel
Testing with TTCN-3

Pierre Bentkowski,
Principal Consultant

TTcn-3

Concurrent TTCN-3

® Why do we need a concurrent test architecture?
® What kind of architectures can be used?

® How TTCN-3 supports such architectures?

®* A TTCN-3 example

® TTCN-3 Configuration Operations

® Tips and Guidelines

- © Telelogic AB. Telelogic

TTCn-3)
Terminology
°* PCO Point of Control and Observation (Port type)
* CP Control Point (Port type)
°* MTC Main Test Component (Component type)
* PTC Parallel Test Component (Component type)
°TS Test System
* TSI Test System Interface
* SUT System Under Test
Testerl
System
Under
Test
Tester2

- © Telelogic AB Telelogic

TTCN-3)
Terminology

°* PCO Point of Control and Observation (Port type)
° CP Control Point (Port type)
°* MTC Main Test Component (Component Type)
° PTC Parallel Test Component (Component Type)
°TS Test System
° TSI Test System Interface
° SUT System Under Test

_._PCO

TSI SUT
-.-PCO

- © Telelogic AB Telelogic

TTCn-3)
Why do we need a concurrent test
architecture?

® By nature, devices and users which are interfaced to the SUT

are functioning in a concurrent manner.

® Even with perfectly synchronized inputs to the SUT, there are
no guaranties that the SUT will reply with the exact same
sequence of outputs.

5 \-

Testerl SUT Tester2

© Telelogic AB Telelogic

TTCN-3)
Why do we need a concurrent test
architecture?

® Tester T1 sends the message A to the SUT

® The SUT replies to both Testers, T1 and T2

® The SUT first sends B to T1, then C to T2

® Therefore the Test Sequence is {T1!A, T1?B,T2?C}

@ T1 QSUT T2

A

© Telelogic AB. Telelogic

TTCn-3)
Why do we need a concurrent test
architecture?

® Tester T1 sends the message A to the SUT

® The SUT replies to both Testers, T1 and T2

® The SUT first sends C to T2, then Bto T1

* Therefore the Test Sequence is {T1!A, T2?C,T1?B}

@ Tl QSUT T2

A

) B |

© Telelogic AB Telelogic

TTCN-3)
Why do we need a concurrent test
architecture?

® Tester T1 sends the message A to the SUT

® The SUT replies to both Testers, T1 and T2

® The SUT first sends B to T1, then C to T2

® The communication channel adds a delay on B

® Therefore the Test Sequence is {T1!A, T2?C,T1?B}

T1 QSUT T2

A

© Telelogic AB. Telelogic

TTCcn-3
Why do we need a concurrent test
architecture?

® The non-deterministic behaviors of the SUT and the channel
delays yield to a set of possible sequences.

— This trivial example yields to 2 possible outcomes.

® Having this kind of alternatives would soon generate very
complex non-concurrent test case descriptions.

testcase TC_NonConcurrent_01()
runs on HostType {

T1.send(A);
alt {
[1 Ti.receive(B){
T2.receive(C)

3

[1 T2.receive(C){
Tl.receive(B)

3

// other events ...

b

- © Telelogic AB Telelogic

TTcn-3

Why do we need a concurrent test
architecture?

® Conformance testing:
— A PBX must accept 12 simultaneous connection requests.

— A railroad switching controller must compute inputs from 4
detection devices and give feedback.

® Service, function and feature testing:
— Establish a 3-way conference.
® Stress, robustness and load testing:

— System must accept 13 simultaneous Service Requests
multiple times during a sustaining period of time.

- © Telelogic AB Telelogic

rTrcn-3

What kind of architecture can be used?

® Architecture with multiple testers of the same type with only
one interface.

Testerl

Syst
Tester2 @ System
Test

Tester3

© Telelogic AB Telelogic

11

TTcn-3

What kind of architecture can be used?

* All testers used the same set of messages and interfaces: one
port definition.
* All testers are identical: one component type.

Master .= \
System
....I@ﬁt@!.@.@_ Under
Test

N
.
‘e
.
‘e
.
‘e
.
‘e
.
g
g

Test Tester3 @/
System

© Telelogic AB. Telelogic

12

13

TTCn-3)
What kind of architecture can be used?

® Architecture with multiple testers of different type.

® Each tester uses its own unique interface.

Testerl

System
Tester2 ﬁ Under
Test

Tester3

© Telelogic AB Telelogic

14

TTCN-3)
What kind of architecture can be used?

® Each tester uses different set of messages and interfaces:

multiple port types.
® Each tester is different: multiple component types.

® But one port type per component type.

Master .- \
System
... Tester2, _ Under
Test

N
.
‘e
.
‘e
.
‘e
.
‘e
.
g
3

Test Tester3'e/
System

© Telelogic AB. Telelogic

15

TTCn-3)
What kind of architecture can be used?

® Architecture with multiple testers of different types.
® Each tester type can have multiple kind of interfaces.

Testerl
Tester2

Tester3

© Telelogic AB Telelogic

16

TTCN-3)
What kind of architecture can be used?

® Each tester uses different set of messages and interfaces:
multiple port definitions.
® Each tester is different: multiple component types.

® Multiple port types per component type.

Tester‘:‘L’ Q.,
Master .~
= Tester2 ' System
............... @ Under
Test

.,
.
‘e
.
‘e
.
‘e
.
‘e
.
‘e
.

© Telelogic AB. Telelogic

TTCn-3)
What kind of architecture can be used?
* The Executable Test Suite can be:
— One Node - Multi-threaded (Simplest, Default)
— Multi-Node
— Mixed
Master Testerl
KO Tester3
Tester2
Test O
System L J i L

= © Telelogic AB Telelogic

TTCN-3)

How TTCN-3 support such architectures?

* Dynamic creation of the test configuration
— Creation of components
* create
— Creation of connections between Components
* map, unmap
— Creation of connections with the TSI/SUT
 connect, disconnect
® Dynamic control of the component behavior
— Control of component behavior
* start, stop, kill
— Lookup of component behavior
 running, done, alive, killed

- © Telelogic AB Telelogic

rTrcn-3

How TTCN-3 support such architectures?

° Communication between components
— Exchange of messages between components
* send, receive
— Implicit verdict mechanism
« setverdict, getverdict

* none, pass, inconc, fail, error

— © Telelogic AB Telelogic

TTcn-3

A TTCN-3 Example

// Behavior description

testcase TC_Concurrent_01()
runs on MTC_Type mtc:MTC_Type
system TSI1_Type {

,

system:TSI_Type

- © Telelogic AB Telelogic

A TTCN-3 Example

TTcn-3

// Behavior description
testcase TC_Concurrent_01(Q)
runs on MTC_Type

system TSI_Type {

,

type component MTC_Type {
port CP_Type CP1;
port CP_Type CP2;

3

type component TSI_Type {
port PCOlaType PCOla;
port PCO2aType PCO2a;

}

// other components ...

type port CP_Type message {

inout // messages ..

// other ports ...

mtc:MTC_Type

CP1:CP_Type CP2:CP_Type

PCOla:PCOlaType PCO2a:PCO2aType

@ system:TSI_Type @

rTcn->
A TTCN-3 Example
// Behavior description
PTC1 := PTClType.create mtc
PTC2 := PTC2Type.create
CP1 CP2
PTCL:PTC1Type PTC2:PTC2Type
PCOla PCO2a
o system °
= © Telelogic AB.

A TTCN-3 Example

rTrcn-3

// Behavior description

PTC1 := PTClType.create
PTC2 := PTC2Type.create

type component PTC1Type {
port CP_Type CP;
port PCO1bType PCO1lb;

3

type component PTC2Type {
port CP_Type CP;
port PCO2bType PCO2b;

}

// other components ...

type port PCOlbType message {

inout // messages ..

// other ports ...

CP1

CP:CP_Type

PTC1

PCO1b:PCO1bType PCO2b:PCO2bType

PCOla

mtc

CpP2

CP:CP_Type

PTC2

PCO2a

system

rmcn3
A TTCN-3 Example
// Behavior description
connect(mtc:CP1, PTC1:CP); mtc
connect(mtc:CP2, PTC2:CP); y
CP1 ¢ % CP2
cp % cP
PTC1 PTC2
PCO1b PCO2b
PCOla PCO2a
o system []
2

25

A TTCN-3 Example

rTrcn-3

// Behavior description

map(PTC1:PCO1b, system:PCOla);
map(PTC2:PCO2b, system:PC02a);

mtc
cp1 & % cP2
cP f 5 CP
PTC1 PTC2
PCO1b PCO2b
PCOla PCO2a
* system

© Telelogic AB Telelogic

26

A TTCN-3 Example

TTcn-3

// Behavior description

PTC1.start(TS_InitiateCall());
PTC2.start(TS_AnswerCall());

function TS_InitiateCall(Q)
runs on PTC1iType {

@ PCOlb.send(msgl);

}

function TS_AnswerCall()
runs on PTC2Type {

PCO2b.receive(msg2);
CP.send(statusConnected) ;

D ey
D .
D Y
o Y
Q Y
Q Y
Q .
0 Y
o .
g Y
Q Y
Q .
D Y
0 .
g (Y
Q Y
Q .
Q .
0 .

PTC1

l msgl

mtc

PTC2

* system

© Telelogic AB. Telelogic

A TTCN-3 Example

rTrcn-3

// Behavior description

PTC1.start(TS_InitiateCall());
PTC2.start(TS_AnswerCall());

function TS_InitiateCall()
runs on PTC1Type {

PCO1b.send(msgl);

3

PTC1 PTC2

function TS_AnswerCall()
runs on PTC2Type {

@ PCO2b.receive(msg2);
CP.send(statusConnected) ;

3

mtc

g .
D .
D Y
o Y
Q Y
Q Y
Q .
0 Y
o .
g Y
Q Y
Q .
D Y
0 .

g (Y
Q Y
Q .
Q .
0 .

msgzl

* system

27 e Telelogic
A TTCN-3 Example
// Behavior description
PTC1.start(TS_InitiateCall()); mtc
PTC2.start(TS_AnswerCall());
status
Connected
function TS_InitiateCall(Q) K ‘
runs on PTC1Type { K %,
PCO1b.send(msgl);
PTC1 ﬁ PTC2
}
function TS_AnswerCall()
runs on PTC2Type {
PCO2b. receive(msg2); ‘ system ‘
@ CP.send(statusConnected);
}
28

© Telelogic AB. Telelogic

TTCn-3)

Creating normal component

* Components are automatically destroyed at the end of the
executed behavior function or when stopped

var PTCType ptcname;

ptcname := PTCType.create('InstanceName');
. // connect, map,

ptcname.stop;

ptcname := PTCType.create(''InstanceName');
. // connect, map,

ptcname.done;

ptcname := PTCType.create('InstanceName');
. // connect, map,

- © Telelogic AB Telelogic

TTCN-3)

Creating alive-type component

* Alive Components can execute multiple behavior functions

® Components are not destroyed when stopped or when there
behavior is done

var PTCType ptcname;

ptcname := PTCType.create("InstanceName'™) alive;
. // connect, map,

ptcname.start(TS_BehaviorTwo());

ptcname.done;

ptcname.start(TS_BehaviorThree());

ptcname.done;

ptcname.kill;

ptcname := PTCType.create("InstanceName'™) alive;
. // connect, map,

- © Telelogic AB Telelogic

rTrcn-3

Connecting and mapping

* After creation of the components we need to connect ports
between MTC/PTC components and map ports between an
MTC/PTC component and the Test System Interface — TSI

— The mtc-keyword identifies the MTC, system identifies the TSI

instance and the self-keyword identifies the currently executing
MTC/PTC

* Without connecting/mapping a component cannot
communicate with the outside world

® When connecting port A and port B, the in list of port A must
match the out list of port B and vice versa

* When mapping port A and port B, the in list of port A must
match the in list of port B, and the out list of port A must match
the out list of port B

— © Telelogic AB Telelogic

TTcn-3

Unconnect and Unmap

® Connections and Mappings can be undone, to change
configuration during the runtime of the test

® Syntax is the same as for connect and map

- © Telelogic AB Telelogic

TTCn-3)

Starting and Stopping test components

® Once components are created and connected/mapped, they
can be started

® The behavior to be executed by the component is given in the
start command

— The behavior is defined as a function
® Components can be stopped using the stop command
— Only the execution of test behavior is stopped.
— Components can stop themselves, or other components
® Components can be destroyed using the kill command
— The execution of test behavior is stopped - if any
— All associated resources (including all port connections) are freed
— Components can kill themselves, or other components

© Telelogic AB Telelogic

TTCN-3)

Querying test components

® The running operation returns a boolean value based on
whether the component is running or not

* The alive operation returns a boolean value based on weather
the component is already executing or ready to execute
behavior, or not

® The done operation can only be executed when the
component has completed its behavior

* The killed operation can only be executed when the
component has been destroyed

© Telelogic AB. Telelogic

Details from ETSI ES 201 873-1 v3.2.1

Table 15: Overview of TTCN-3 configuration operations

rTrcn-3

Operation

| Explanation

| Syntax Examples

Connection Operations

connect

IConnects the port of one test
component to the port of another test
component

cennact (ptolipl,

pte2:p2l s

disconnect Disconnects two or more connected disconnect (ptel:pl, ptoZ:p2);
ports

map Maps the port of one test component to [map(ptel:q, system:sutPortl);
the port of the test system interface

unmap Unmaps two or more mapped ports unmap (ptcl:g, system:sutPortl);

Test Component Operations

create

Creation of a normal or alive test
compenent, the distinction between
normal and alive test components is
made during creation

(MTC behaves as a normal test
component)

var PICTyp= c 1=
Alive test components:
var PICType c :=

Non-alive test components:

PTCType.creats;

PTCType.creats alive;

start

Starting test behaviour on a test
compenent, starting a behaviour does
not affect the status of component
variables, timers or ports

c.start (PTCBehavi:

our (1) ;

stop

Stopping test behaviour on a test
component

c.stop;

Kill

Causes a test component to cease to
exist

<. kill;

alive

Returns true if the test component has
been created and is ready fo execute or
is executing already a behaviour
otherwise refums false

if (c.alive) .

running

Returns true as leng as the test
compenent is executing a behaviour;

otherwise refums false

if (c.running] .

35 oy Telelogic
Operation Explanation Syntax Examples
done IChecks whether the function running on |=. dons;
2 test component has terminated
killed [Checks whether a test componenthas |=.killed [. |
ceased fo exist
Reference Operations
mitc \Gels the reference to the MTC connect (mtc:p, pte:pl;
system Gets the reference to the test system map (c:p, system:sutPort];
interface
self Gets the reference to the test salf.stop;
component that executes this operation
36 © Telelogic AB Telelogic

rrcn-3
@ Tips and Guidelines

®* Common behavior must be defined in function
function TS_SetupConnection()
runs on PTC1Type {

PCOl1.send(msgl);

® Theses functions can be called by any other function running
on the same component type.

* These function should be parameterized with the PCO and CP
that they use.
function TS_SetupConnection(:PCOType)
runs on PTC1Type {

.send(msgl);

— © Telelogic AB Telelogic

TTcn-3

@ Tips and Guidelines

* |t is strongly recommended to check that the PTCs have
finished their execution, with the use of the DONE statement in
MTC, before terminating the MTC.

all component.done;
setverdict(pass);
stop;

- © Telelogic AB Telelogic

TTCn-3)

Tips and Guidelines

® There is no need to explicitly passed PTC verdicts to the MTC
using coordination messages

— A global verdict is automatically maintained by the MTC
— The global verdict is updated whenever a component terminates
— Remember: Verdict never improve

— Make the TTCN-3 script more readable

- © Telelogic AB Telelogic

TTCN-3)

Testing Concept: Self-test of Test Cases

® Use Concurrency to perform a Nomai
self-test of a test case Test system B
— All behavior is encapsulated in a
function. In the normal case, this MT
function is simply called in the f 4
MTC Test System Interface%
— For Self-Testing, a Simulation of SUT
each of the SUT Ports is
implemented in one or more
Parallel Test Components (PTCs). Selftest Behavior_function()
They are connected to the MTC Test system \<<Ca\ls>>

— Since the Test System Interface _
can be left empty, SUT Adaptation PTC (Simu2i—>

is not needed for the self-test test
suite

- © Telelogic AB Telelogic

ports PTC (Simul)>
(< mMTC

Test System Interface

a1

rTrcn-3

Benefits with Concurrent TTCN

® |ess code to write
® Can have several test architectures in the same test suite
*® Several service providers can be used

® Other components can be created at any time during the test
case execution
e Concurrency
— We can have several components executing simultaneously

— Several processes aiming at the same goal

© Telelogic AB Telelogic

