TTCN-3 in the Internet of Things(IoT), Testing in lossy environments

Anthony Baire, César Viho

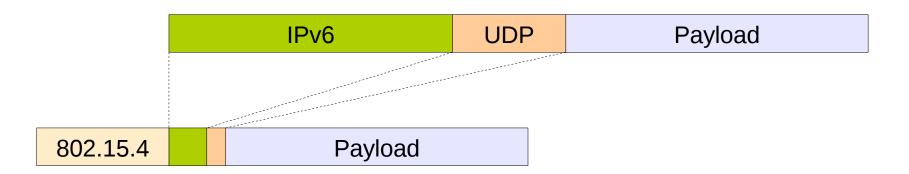
June 2011 TTCN-3 User Conference

Summary

- 1. Context
- 2. IEEE 802.15.4 & 6LowPAN constraints
- 3. Addressing packet losses
 - 1. Hardware solutions
 - 2. Multiple runs
 - 3. Presenting the results in the TTCN-3 environment

Context of the work

- Focus on conformance & interoperability testing
- growing interest in testing in unreliable environments
- IPv6 Ready Logo Committee
 - Certification program for the IPv6 protocol suite


- Partnership with the IPSO Alliance (IP for Smart Object)
 - Design tests for IPv6 embedded devices
 - Targets 6LoWPAN, -ND (neighbour discovery), -HC (header compression) and RPL (routing) protocols

IEEE 802.15.4 (typical 6LowPAN link layer)

- Low power radio link-layer
 - Low power (~1mW)
 - Lossy (using the 2.4Ghz band)
 - Low rate (20kbps to 250kbps)
 - Tiny frames (127 bytes)
- Applications
 - sensor networks
 - personal area network (home automation, ...)

IETF 6LowPAN overview

- IPv6 adaptation for Low power wireless networks (especially IEEE 802.15.4)
 - features
 - header compression, fragmentation (tiny frames)
 - mesh routing
 - support for sleeping nodes

Link reliability vs. test requirements

- Link layer not reliable
- Packet losses

- Issues for testing
 - Observability issues
 - → risks for
 - False positive (permissiveness)
 - False negative (bias)

Possible solutions

- hardware solutions
- run the tests multiple times
- design the testcases to produce an 'inconc' verdict in case of (suspected) packet loss
- monitor the environment during the tests

Hardware solutions

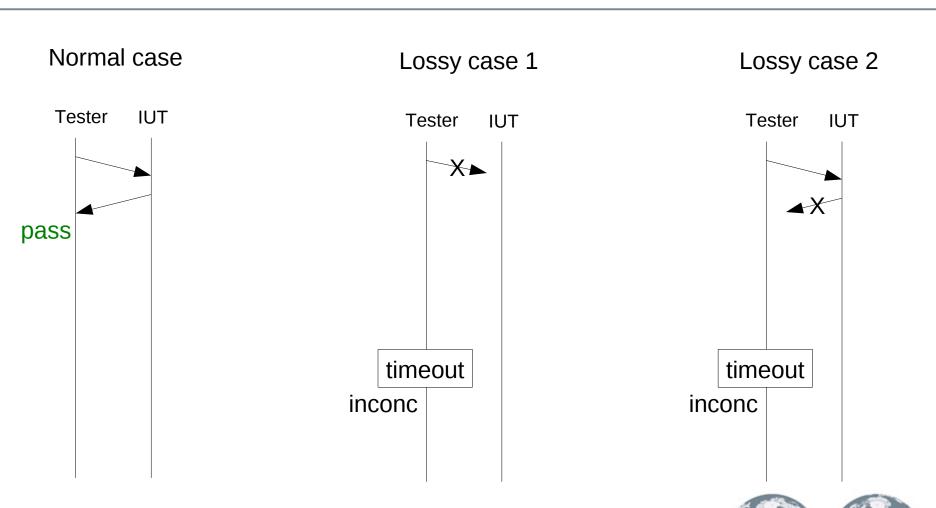
- Possible strategies
 - Bypass the lossy medium
 - eg. connect the implementation directly w/ a coaxial cable
 - → generally not possible (embedded devices, embedded antenna)
 - Minimise the probability of packet loss
 - difficult: same band as wifi signals (20db stronger)
 - would need a Faraday cage
 - how about other physical media?

Multiple runs approach

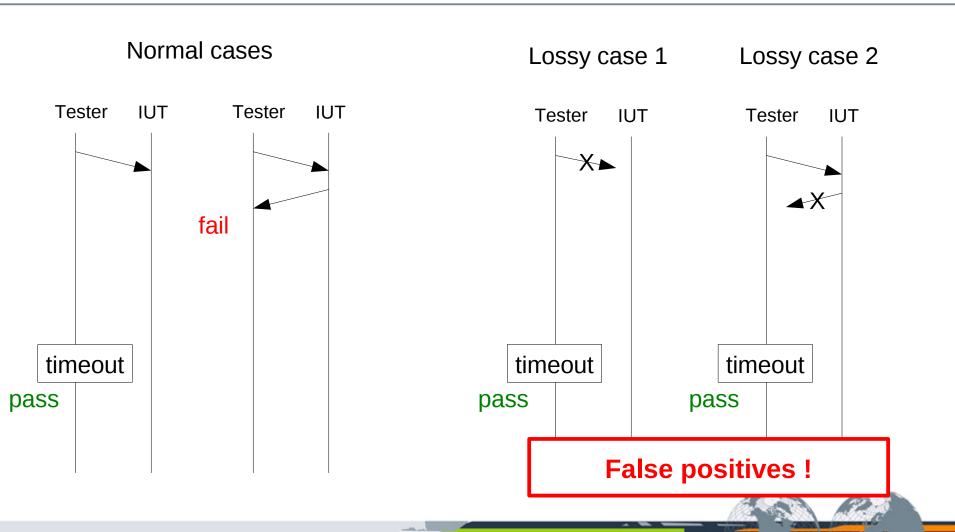
- Run each test case multiple times
 - → increases the chances of having a clean run

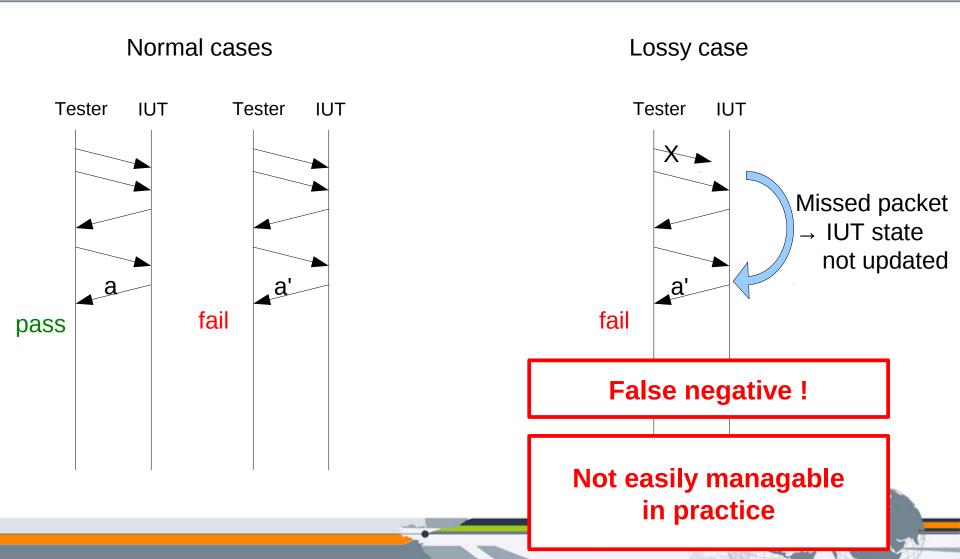
- Issue: how to distinguish biased verdicts from correct verdicts?
 - manual case-per-case analysis too cumbersome
 - need a way to prioritise these verdicts

use verdicts precedence


 Possible Solution: return "inconc" in case of suspected packet loss

(i.e. consider packet losses as a property of the SUT)


→ then combine the verdicts from multiple runs

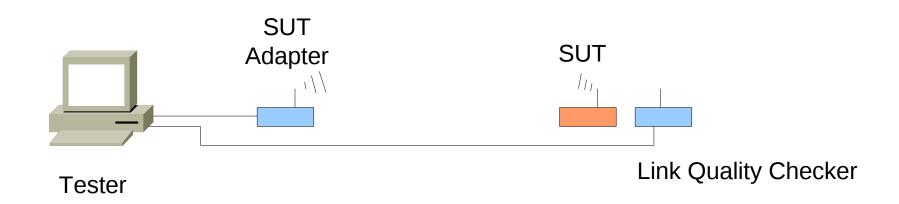

Example 1: reply expected

Example 2: reply not expected

Example 3: stateful behaviours

Monitor the environment

 monitor link quality during the test execution (background noise)


 objective: evaluate a level of confidence of the verdict of each test run

Using a second transceiver

- Use a second transceiver to check if frames sent to the SUT are received with good quality
- For each received frame, the transceiver returns the quality of the signal
 - → higher signal quality means higher confidence in the test verdict

Using a second transceiver

→ detection of forward losses (Tester → SUT)

Issue

→ how to detect losses from SUT the tester?

Presentation of the results & TTCN-3

- Link quality monitoring feasible in the System Adapter. How to report it and re-execute the testcase?
 - directly in triEndTestCase() → return TRI_ERROR when the actual verdict is not reliable
 - interact with the testcase (external function/port) to report the level of confidence

Issues & possible evolutions in the TTCN-3 environment

Issue :

- in case of multiple runs, all instances of the same testcase are equally presented to the user
- some post-processing is required to indicate which one is relevant
 - → it would be useful to have a way to highlight (or select) which testcases instances to present in the log summary

Conclusion

- Lossy medium induces uncertainty in the test
- Some solution identified:
 - bypass the lossy medium (hardware solution)
 - multiple runs
 - assumes packet loss is a property of the SUT (inconc) (use the 'inconc' verdict)
 - monitor the environment (level of confidence)
- Need a way to highlight the relevant testcases instances in the test results

Questions?

Contacts: abaire@irisa.fr / viho@irisa.fr

