
Model Based Testing: 
experiences from TTCN-3 
point of view 

Tibor Csö ndes, Ericsson   
Ferenc Bozó ki, ERICSSON
Gyö rgy Ré thy, Ericsson
Stephan Schulz, CONFORMIQ
Athanasios Karapantelakis, CONFORMIQ
Jani Koivulainen, CONFORMIQ



Slide title 

Do not add objects or Model Based Testing, Theory and Practice  |  Public  |  © Ericsson AB 2010  |  2010-05-03  |  Page 2

Outline

› Motivation

› Why Model Based Testing?

› MBT Impact on Test Suite Design 

› Approaches for Test Harness Implementation 

› Workflow

› Catches and traps



Slide title 

Do not add objects or Model Based Testing, Theory and Practice  |  Public  |  © Ericsson AB 2010  |  2010-05-03  |  Page 3

Motivation

› Introduction of Model Based Testing in context of TTCN-3

› Give a summary about the differences of manually 

designed and model based test suites

› Investigate the different approaches of test harness 

implementation

› Share our experiences with model generated TTCN-3 test 

suites



Slide title 

Do not add objects or Model Based Testing, Theory and Practice  |  Public  |  © Ericsson AB 2010  |  2010-05-03  |  Page 4

Test Automation

› “Classical” test automation: automation of test execution

› MBT: automation of test design (automatic test generation 
from a model)

MBT

Automated test

Manual test

Trend

Typical tester

Happy advanced 

tester

MBT is a higher level

problem solution



Slide title 

Do not add objects or Model Based Testing, Theory and Practice  |  Public  |  © Ericsson AB 2010  |  2010-05-03  |  Page 5

Test Automation (contd.)

› “Classical” automated testing
– each test case checks one or

a few transitions

– each test case is developed

separately

– each test case is maintained

separately

– each test engineer is exposed

to details of SUT interfaces

…etc

TC#2

testcase tc_TP#1 () 

runs on MTCType_CT system MTCType_CT 

{

map(mtc:My_PCO, system:My_PCO);

My_PCO.send ( t_SYN(A));

alt {..

[] My_PCO.receive(t_SYN_ACK(A+1,B))

{My_PCO.send(t_ACK(A+1,B+1))

setverdict(pass)};

}

TC#1

TC#3



Slide title 

Do not add objects or Model Based Testing, Theory and Practice  |  Public  |  © Ericsson AB 2010  |  2010-05-03  |  Page 6

Test

Harness

Test Automation (contd.)

› Model Based Testing

– tests are generated 

from an SUT model

– at SUT change the 

model is updated 

and test cases are 

re-generated

– models only include 

interface aspects & 

data related to the 

functionality to be 

tested

– tests are generated 

based on coverage 

criteria 

Model

Algorithmically 

generated

TC#1

TC#1

TC#2TC#N

Algorithmically 

generated

TestSuite

TTCN-3



Slide title 

Do not add objects or Model Based Testing, Theory and Practice  |  Public  |  © Ericsson AB 2010  |  2010-05-03  |  Page 7

Model Based Testing on Field

› Pros and Cons of Model Based Testing

– Reduces fault slip through

Design phase

Design phase

Testing phase

Development time

Testing phase

Model development of the 

Design and model 

development of the Testing 

could take place parallel 

 model development for 

testing verifies the model of 

the design 

some faults could be 

found in the “development 

phase”

Reduces development 

time

Model Driven Engineering



Slide title 

Do not add objects or Model Based Testing, Theory and Practice  |  Public  |  © Ericsson AB 2010  |  2010-05-03  |  Page 8

TTCN-3 code

Case Studies: Test Arrangement
› Generated tests: abstract TTCN-3 test cases 

(not directly executable)

› Test harness: all the the extras that makes the abstract test 

cases executable (TTCN-3 code, adapters, TTCN-3 tool 

environment etc.)

model

Abstract

test cases

Test

harness

Executable



Slide title 

Do not add objects or Model Based Testing, Theory and Practice  |  Public  |  © Ericsson AB 2010  |  2010-05-03  |  Page 9

Approaches for Test Harness

Adapters (test ports)

Test Environment

Abstract test cases

Protocol definitions

& encoding

SUT

Adaptation Layer
Generic Glue  Code Lib

Adaptation Layer

› Hand written glue code
– Demands advanced knowledge of 

TTCN-3 and the TTCN-3 tool

– Demands advanced knowledge of

the underlying test harness

– Repeated development if the tested 

scenario changes

– Test harness is project-specific

› Using generic glue code
– Built on top of already existing 

generic SW libraries (TitanSim)

– Requires only minor project-specific 

adaptation

– Generic part: write once, use several 

times: additional gain to test case 

generation



Slide title 

Do not add objects or Model Based Testing, Theory and Practice  |  Public  |  © Ericsson AB 2010  |  2010-05-03  |  Page 10

Workflow

Test Framework SUT

Test Executor Tool

Test Goals
SUT

Specification

Test Scripts

Defining the
Model interfaces

Defining the
Model behavior

Modelling

Model

Test Generation
(automatic)

Test Cases

Test Script
Generation
(automatic)

Test Results

Test harness
Implementation

(manual)

Test Result
Analysis
(manual)



Slide title 

Do not add objects or Model Based Testing, Theory and Practice  |  Public  |  © Ericsson AB 2010  |  2010-05-03  |  Page 11

Experiences, recommendations

› MBT is a paradigm shift

› “Right” competence is required, training is needed

› New roles should be established within the test organisation, 

especially the model designer/”test architect”

› When designing the good model, the tester shall not think in 

terms of test cases – the tester should, ultimately, only think 

of the system behaviour

› The generated test cases cover several events (Model/Test 

requirements), while the traditional test cases normally only 

cover one event/situation

› Start with a smaller, well defined, well encapsulated, 

area/functionality

› Save time and money! On average: ~20-30%



Slide title 

Do not add objects or Model Based Testing, Theory and Practice  |  Public  |  © Ericsson AB 2010  |  2010-05-03  |  Page 12


