
www.elvior.com

TTCN-3 in end-to-end model based

testing explained on a case study

TTCN-3 User Conference 2010

8-10 June, Beijing, China

Presenter: Andrus Lehtmets (andrus.lehtmets@elvior.com)

Elvior

mailto:andrus.lehtmets@elvior.com
mailto:andrus.lehtmets@elvior.com

www.elvior.com

About Elvior

Founded in 1992

Location: Tallinn, Estonia

Test tools

► TestCast TTCN-3 test tool

► TestCast Generator

► XML–Simulator

Testing services

► TTCN-3 testing

► Model based testing

► Embedded systems

testing

► Building automated test

environments

www.elvior.com

Agenda

Overview of model-based testing (MBT)

Tools used in practical exercise

Example SUT (Light switch)

Workflow of MBT

System Adapter (SA) used in example

Light switch state model

Test cases generation

Execution of generated TTCN-3 test cases

Example of real industrial case study

Questions

1
2

3

4

5

6

7

8

9

10

www.elvior.com

Model Based Testing (MBT) – what is it?

► is software testing where

► from a model that describes some (usually functional)

aspects of the system under test

► + model coverage criterion

► test cases (scripts) are derived automatically by some

tool

www.elvior.com

TTCN-3 testing

SUT

specification

Test code/script

TTCN-3

TTCN-3

Test Tool

Test goal

System Under Test

(SUT)

www.elvior.com

Model Based Testing and TTCN-3

SUT

specification

Test Generator

SUT state model

Test goal

Test code/script

TTCN-3

System Under Test

(SUT)

TTCN-3

Test Tool

www.elvior.com

MBT – when to use?

► it is possible to formalize system behavior OK / not NOK

► functional testing OK / GUI testing NOK

► automated testing OK / manual testing NOK

► it must be possible to control testing by test script and SUT behavior

must be observable

Test tool
observable events

controllable events
Test script

System Under Test

(SUT)

www.elvior.com

Benefits of MBT

► Writing and maintenance of test scripts is a time and effort consuming

task.

► Better tests. Easier and cheaper to generate sufficient amount of test

scripts to achieve a good enough test coverage.

► Lower costs. Work effort for test suite maintenance will reduce
significantly.

► Instead of maintaining huge amount of test scripts the test
engineer should maintain a SUT model only.

► If there are changes in the behaviour of the SUT then it is rather
easy to update the model correspondingly and re-generate all test
scripts once again.

www.elvior.com

Classical expectations to MBT

1.Through formalization discloses ambiguity in

specifications and helps validation of

specifications.

2.Better test coverage.

3.Cost effective in maintenance phase.

www.elvior.com

Test environment in MBT (Elvior approach)

www.elvior.com

Tools – Poseidon for UML (3rd party tool)

► Used for creating SUT model

► transition language

► subset of TTCN-3

www.elvior.com

Tools – TestCast Generator (Elvior test generator)

► Used for generating tests (TTCN-3 scripts)

► uses SUT model in XMI format (created by Poseidon)

► Runs on Eclipse platform

www.elvior.com

Tools – (Elvior TTCN-3 test tool)

► Used for executing TTCN-3 tests

► uses test scripts generated by TestCast Generator

► Runs on .NET framework

www.elvior.com

SUT–LightSwitch–the example SUT (description)

The system under test (SUT) is a

lighting system that consist of a switch

that turns lights on or off at the user’s

request

www.elvior.com

SUT–LightSwitch–the example SUT (requirements)

► The light shall be switched on by the request from the

controlling environment,

► The light shall be switched off by the request from the

controlling environment.

► If the light is already on/off, requesting the same operation

(turning light on/off respectively) shall not change the system

state.

► if SUT receives not supported command, then it notifies

the controlling environment.

► https://d-mint.cc.ioc.ee/moodle/

https://d-mint.cc.ioc.ee/moodle/
https://d-mint.cc.ioc.ee/moodle/
https://d-mint.cc.ioc.ee/moodle/

www.elvior.com

SUT–LightSwitch–the example SUT (use cases)

#

Precondition

Input (to the

SUT)

Expected result (from the

SUT)

1 Light is off Command

turnOn

lightIsOn

2 Light is on Command

turnOff

lightIsOff

3 Light is off Command

turnOff

lightIsOff

4 Light is on Command

turnOn

lightIsOn

5 Light is on or off Unknown

command

Unrecognised command

www.elvior.com

SUT–LightSwitch–the example SUT (interface)

Input (to the SUT) Output (from the SUT)

1 string command string currentLampState

1. SUT interacts with outside world using console

interface (standard input/output)

2. iLights interface defines commands and SUT

responses

Input (to the SUT) Output (from the SUT)

1 ready

2 turnOn lightIsOn

3 turnOff lightIsOff

4 xyz Unrecognized command

5 exit

Text constants for input and respective output

www.elvior.com

SUT–LightSwitch–the example SUT (test environment)

 cmp LightSwitchTesting_2

«SUT»
LightSwitch

iLights

«Environment»
 MessageMagic

«Adapter»
TC-SUTAdapter

TRI

Adapter between test tool and SUT is needed.

www.elvior.com

System Adapter used in example (general)

 System Adapter (SA) connects testing tool (TestCast (TC)) with

System Under Test (SUT).

 TRI - TTCN-3 standardizes interface between testing tool and SA,

this interface is called TTCN-3 Runtime Interface.

 Interface between SA and SUT is always proprietary and therefore

needs to be implemented within SA.

TTCN-3 test tool

(TestCast)

System Under

Test (SUT)

System

Adapter (SA)

TRI SUT interface

 TRI interface is mapped for different languages (C, C++, C#,

Java) (Part 5: TTCN-3 Runtime Interface)

 Implementation is tool dependent.

 Most important is what to implement in the methods of the

interfaces (i.e. triSend, triEnqueueMsg, triMap)

www.elvior.com

System Adapter used in example (implementation)

1. Implemented in C#, separate executable

2. SUT specific implementations for ITriCommunicationSA:

► TriMap, TriUnmap

► TriSend

► TriExecuteTestCase, TriEndTestCase

3. SUT specific implementations for ITriCommunicationTE:

► EnqueueMessage

4. Additional functionality:

► SUT start, stop

► Msg traffic logging in SA window

www.elvior.com

Workflow of MBT (Elvior approach)

► Create SUT model.

► Prepare test data, messages, configuration, functions in TTCN-3.

► Create system adapter according to TTCN-3 TRI.

► Create codecs.

► Generate tests for specified test goal.

► Execute tests.

► Evaluate results and continue with next increment.

www.elvior.com

State Model of SUT

www.elvior.com

Inputs from external tools (Poseidon case tool)

Transition Starting state Trigger (cmd) Effect (output) Next state

T1 LightSwitch_Off TurnOn LightIsOn, Silence LightSwitch_On

T2 LightSwitch_On TurnOff LightIsOff, silence LightSwitch_Off

T3 LightSwitch_Off TurnOff LightIsOff, silence LightSwitch_Off

T4 LightSwitch_On TurnOn LightIsOn, Silence LightSwitch_On

T7 LightSwitch_On UnknownCmd LightIsOn, Silence LightSwitch_On

T8 LightSwitch_Off UnknownCmd LightIsOff, Silence LightSwitch_Off

www.elvior.com

Inputs from external tools (static scripts used in test cases

generation)

1. TestData.ttcn describes the possible messages (commands) sent to

SUT, such as turnOn and turnOff (for turning the switch on/off), and

possible response types from SUT (such as lightIsOn, lightIsOff).

2. TestConfiguration.ttcn describes test component (Tester), its port for

message exchange (iLights) and the message types (Command and

Output). In addition, it defines the function silence(float duration_sec)

for better visualization of the LightSwitch SUT.

www.elvior.com

Test cases generation

Precondition: Eclipse framework and TestCast Generator are installed

Steps for test scripts generation:

► Creating a new TestCast Generator project

► Handling test generation inputs (from external tools)

► Linking external test inputs to a test generation task resource set

► Defining guidelines for a test generation task

► Generating TTCN-3 test scripts

www.elvior.com

Test cases generation – TestCast Generator

preferences

www.elvior.com

Execution of generated test cases

Precondition: TestCast TTCN3 tool installed, system adapter exists

(TRI), SUT is reachable.

www.elvior.com

WEB page testing – industrial case study 1

Selenium Core

Remote Control Server

System Adapter

Test

purpose
SUT model

TTCN-3 test tool Generator

www.elvior.com

Industrial case study 2 - Feeder Box Control Unit

Feeder Box Control Unit (FBCU). It is a subsystem of the street
lighting control system functioning today in Tartu, the second biggest
city of Estonia.

www.elvior.com

Industrial case study 2 – test environment

Poseidon TestCast Generator

TTCN-3

XMI

TestCast TTCN-3 test tool

TestCast-LabView adapter

LabVIEW

Power supply module Digital/analog module

FBCU (SUT, hybrid embedded system)

System Adapter

Hardware adapter

USBUSB

TRI

Messages over TCP/IP

www.elvior.com

Industrial case study 2 – SUT state model

Model of FBCU power management (31 states, 73 transitions)

www.elvior.com

Industrial case study 2 – results, increment 1

Using MBT in this case study is very efficient, because
FBCU behavior is complex and it is easier to change
model than rewrite test code – proved in practice.

Numbers (first increment):

Time Code lines

1 TTCN-3 code (messages,

test data, configuration)
~ 15 days ~ 1100

2 System adapter 150 days ~ 15 000

3 Model building ~ 45 days NA

4 Generated tests NA ~ 20 000

www.elvior.com

Industrial case study 2 – results, increment 2

FBCU changed significantly, new model was built from

scratch.

Numbers (second increment):

Time Code lines

3 Model building ~ 10 days NA

4 Generated tests NA ~ 20 000

3 fatal bugs found.

www.elvior.com

Conclusion

 There are common tasks to be solved in both cases (manual and

model based TTCN-3 testing).

 Using MBT with TTCN-3 gives extra advantage (TTCN-3 is

dedicated for tests, it is natural to generate TTCN-3).

 Building the model formalizes SUT behavior and therefore

discloses ambiguity in SUT specifications.

 Model building is resources consuming work, it pays back in

maintenance phase – it is easier to alter model and generate tests

again.

 MBT advantages are more visible with complex SUT models.

 MBT gives very handy approach for exploratory testing.

www.elvior.com

Supported by:

Thank you !

Questions ?

References:

testcast.elvior.com

www.d-mint.org

../../../../../Documents and Settings/Andrus.ANDRUSPT/Local Settings/Temporary Internet Files/Content.IE5/I9WSH3OK/messagemagic.elvior.com
http://www.d-mint.org/
http://www.d-mint.org/
http://www.d-mint.org/

