
A Proposal for Modifying TCI-CH Interface
to Facilitate Implementation of Decentralized

Self-organizing TTCN-3 Test Platform

Min Shan, Xianrong Wang, Xingming Ye, Lili Guo, Lijun Zhao
College of Computer Science, Inner Mongolia University

Huhhot, 010021, P.R. China
{csshanmin, cswxr, xmy, cszhaolj,csguoll}@imu.edu.cn

(present at T3UC 2010)

abbreviation
• SUT System Under Test
• ETS Executable Test Suite
• TE Test Executable
• CH Component Handling
• TCI TTCN-3 Control Interface
• MTC Main Test Component
• PTC Parallel Test Component

Motivation
• CH : handling component operation
• CH interactive with TE through standard

TCI-CH Interface
– TCI-CH provided
– TCI-CH required

Motivation

The distributed test system architecture defined in TCI standard

Motivation
• What will happen when executing some

test suites for testing some high
throughput systems from industry?
– a large number of test nodes are required
– time-consuming

Motivation
• drawback of a centralized test platform

containing a large number of test nodes
using in time-consuming test suite
execution:
– scalability problem

• solution: decentralized self-organizing
TTCN-3 test platform

• modifications on TCI-CH interfaces

Outline
• the modifications on TCI-CH interface to:

– solve a problem on taking distributed
snapshot when executing done and killed
operation

– represent all component and any component
– apply test nodes for executing a test suite
– release test nodes after finishing test suite

execution

Taking Distributed Snapshot
testcase tc1 tc1 runs on MTC_Type system SYS_Type
{

var ptctype c1, c2, c3;
…
alt
{

[]ptc1. killed
{

…
}
[]any component.done
{

…
}

}
…

}

Taking Distributed Snapshot
• side effect
• applicable solutions for taking distributed

snapshot:
– CH ensures that the status of all test

components do not change during taking
distributed snapshot operation

– local TE fetches the status of relevant test
components from CH, and the match operations
are based on the status.

Taking Distributed Snapshot
• drawback of existing TCI-CH interface for

taking distributed snapshot:
– TCI standard has not define any operation for

TE to inform starting and finishing taking
distributed snapshot

– the signature tciTestComponentKilledReq and
tciTestComponentDoneReq can not directly
get the status of test components. Incorrect
judgment may be caused by using the two
operations together to judge the status of test
components if the status of the component
changes between the two operations

Taking Distributed Snapshot
• alternative modification :

– add new signatures to inform CH
starting/finishing taking snapshot

• TCI-CH provided:
void tciStartTakingDistributedSnapshotReq()
void tciFinishTakingDistributedSnapshotReq()

– add a new signature to directly fetch the status
of test component

• abstract data types:
tciComponentStatusType

• TCI-CH provided:
tciComponentStatusType tciGetTestComponentStatus(

TriComponentIdType component)

Represent all component and
any component

• any and all refer to PTCs only, i.e. the MTC
is not considered. (TTCN-3 core language v4.1.1,
Table 20, page152)

• Who knows all of PTCs? (local TE? tastcase?
CH?)

• local TE only knows the PTCs deployed at
or created from local test node

Represent all component and
any component

• all component & any component are only
allowed using from MTC (TTCN-3 core language
v4.1.1, Table 20, page152)

• Does testcase know all of PTCs?
– Components can be created at any point in a

behaviour definition providing full flexibility with
regard to dynamic configurations (i.e. any
component can create any other PTC) (TTCN-3
core language v4.1.1, page145)

• testcase does not know PTCs created by
other PTCs

Represent all component and
any component

• only CH knows all of PTCs
• when executing an configuration operation

for all PTCs or any PTCs, TE should
inform CH that the operation is for all
PTCs or any PTCs, so that CH can dispose
the operation into multiple operations,
each of which is for an individual PTC
– introduce two virtual component IDs in TCI:

• VirtualAllComponentid
• VirtualAnyComponentid

testcase tc1
runs on MTC_Type
system SYS_Type

{
var ptctype c1, c2, c3
…
alt
{
[]ptc1. killed
{

…
}
[]any component.done
{

…
}

}
…

}

TCI-CH providedTE

tciStartTakingDistributedSnapshotReq()

tciTestComponentKilledReq(c1)

tciTestComponentDoneReq(VirtualAnyComponentid)

tciFinishTakingDistributedSnapshotReq()

• the extended signatures for applying test
nodes when initialization
– TCI-CH provided:
TBoolean tciInitTestPlatformReq (in TInteger TestNodeNum)
– TCI-CH required:
TBoolean tciInitTestPlatform ()

• idle&busy test node

Apply Test Nodes

Use scenario – apply test nodes when initialization

Apply Test Nodes
TE TCI-CH Provided

tciInitTestPlatformReq(testNodeNum)

TCI-CH Required

tciInitTestPlatform()

TCI-CH Required

tciInitTestPlatform()

TBoolean

TBoolean

TBoolean
...

finding available idle Test Nodes

• the extended signatures for releasing test
nodes after finishing test suite execution
– TCI-CH provided:
void tciReleaseTestPlatformReq ()
– TCI-CH required:
void tciReleaseTestPlatform ()

Release Test Nodes

Use scenario - release test nodes after finishing test suite execution

Release Test Nodes
TE TCI-CH Provided

tciReleaseTestPlatformReq()

TCI-CH Required

tciReleaseTestPlatform()

TCI-CH Required

tciReleaseTestPlatform()

...

two open questions
• Are the TCI-CH required operations for

alive/running/done/killed necessary? (why do
not storing status in CH)

• Why most of operations in TCI-CH interface
(such as operations for start, connect, send)
have no return value, whereas an operation in
TRI often returns a value of TriStatusType to
indicate whether the execution of the
operation is successful or failed

Thank you!

Any Question?

	A Proposal for Modifying TCI-CH Interface to Facilitate Implementation of Decentralized Self-organizing TTCN-3 Test Platform
	abbreviation
	Motivation
	Motivation
	Motivation
	Motivation
	Outline
	Taking Distributed Snapshot
	Taking Distributed Snapshot
	Taking Distributed Snapshot
	Taking Distributed Snapshot
	Represent all component and any component
	Represent all component and any component
	Represent all component and any component
	幻灯片编号 15
	Apply Test Nodes
	Apply Test Nodes
	Release Test Nodes
	Release Test Nodes
	two open questions
	幻灯片编号 21

