
NIKOLAY PAKULIN , NPAK@ISPRAS .RU

ALEX BERGE, ALEXANDRE.BERGE@AMB-
CONSULTING.COM

An Approach to Codec
Development for Text-based

Protocols

CONSULTING.COM

ANTHONY BAIRE , ABAIRE@IRISA .FR

MILAN ZORIC , MILAN.ZORIC@ETSI .ORG

8-10 June 2010T3UC, Beijing

Motivation

� Text-based protocols are widely used in IT

� FTP, HTML/SIP/SDP, SMTP/POP3/IMAP4 …

� Text-based protocols utilize simple syntactic
structures

Could be defined using regular expressions

T3UC, Beijing

� Could be defined using regular expressions

� Do we need Java/C/C++ coding to develop codecs?

8-10 June 2010

Proposal

� Develop general-purpose codec for text-based
protocols

� Extensible at low cost

� Portable: OS-agnostic

� Facilitating debugging and log analysis

T3UC, Beijing

� Facilitating debugging and log analysis

� Make it reusable in any TTCN-3 environment

� Utilize TCI / TRI

� Implement prototype

� Apply for SIP/SDP codec for IMS SIP conformance test system

8-10 June 2010

Decoding Strategies for Text-based Protocols

� Greedy decoding
� charstring reads all characters
� Records are decoded field by field
� Very basic, not practical:

For example: how to decode user@example.com?

� Regular-expression based decoding

T3UC, Beijing

� Regular expression defines the scope of the value and decomposes its
structure
<([^@]+)@([^>]+)>:

group 1 -> field ‘user’, group 2 -> field ‘site’
< and > are boundaries of the value

� Manual customization
� Implement specific decoding algorithm in the target language

8-10 June 2010

Encoding Strategies for Text-based Protocols

� Format-based encoding
� Format specifies wrapping of the encoded value: <%s>
� Records are encoded field by field
� Very basic:

For example: how to encode template {“user”, “example.com”}?

� Pattern-based encoding

T3UC, Beijing

� Pattern defines the structure of the encoded value
<${user}@${site}>:

field ‘user’ is encoded first, then “@” goes, then field ‘site’ is
encoded

The values is wrapped into < >

� Manual customization
� Implement specific encoding algorithm in the target language

8-10 June 2010

Codec development process

TTCN-
3

Source

Develop
regular

expressions

T3UC, Beijing

Develop
encoding
patterns

Develop
manual
codecs

Config.
Files

CODEC

8-10 June 2010

Architecture Overview

Test System

ATS

T
T

C
N

-3

Types

T3UC, Beijing

CODEC Adapter

Java

CoDec
library

Manual
CoDec

TTCN-
3

Source

Encoder
Decoder

Config

8-10 June 2010

Main Components

� Codec library – implements basic coding and decoding
algorithms for text-based protocols

� Coder/Decoder configuration files – provide configuration
parameters for Codec library

� XML format

T3UC, Beijing

� XML format

� TTCN-3 type information

� Regular expressions for decoding

� Encoding patterns

� Manual Codec in Java/C++

� Very few (e.g. approx. 3% of LibSip types)

8-10 June 2010

Benefits of the Architecture

� Development simplification
� Define regular expressions + encoding patterns

� No need for intensive Java/C++ development

� Extensibility of the test suite
� No Java/C++ coding to extend codecs for new types

T3UC, Beijing

� No Java/C++ coding to extend codecs for new types

� Maintainability of the test suite
� Re-define regular expressions + encoding patterns

� Little probability of re-compilation if TTCN-3 test suite
changes

� Test system robustness

� Only few codecs require Java/C++ programming

8-10 June 2010

Configuration File Format

� XML is selected because:

� Self-validating due to XML schemes

� Structured and self-documenting

� XML configuration

Type information – integer, charstring, record/set, record/set

T3UC, Beijing

� Type information – integer, charstring, record/set, record/set
of, union, enumerated; optional fields

� Codec information

� Decoding strategy

� Encoding strategy

� Validation tool

� Informs about problems in XML configuration

8-10 June 2010

XML Configuration Look and Feel

� Type
<ns:record name="UserSite">

<ns:field name="userInfo" type="Module.UserPassword" optional="true"/>
<ns:field name="siteInfo" type="Module.SitePort"/>

</ns:record>

� Codec
<ns:regex id=“userRe”>[^@]+</ns:regex>

T3UC, Beijing

<ns:regex id=“userRe”>[^@]+</ns:regex>
<ns:record type="Module.UserSite">

<ns:decoder>
<ns:decodeByRegEx>

<ns:regex>(?:(${userRe})@)?(.*)</ns:regex>
</ns:decodeByRegEx>

</ns:decoder>
<ns:encoder>

<ns:template>[${userInfo}@]${siteInfo}</ns:template>
</ns:encoder>

</ns:record>

8-10 June 2010

Codec Library in Java

� 130 Java classes in 7 packages, 10 KLines of source code
� Supported TTCN-3 types:

� Primitive types: charstring and integer
� Enumerated types
� Composite types: record, record of, set, set of, union
� Omit values

Supported decoding strategies:

T3UC, Beijing

� Supported decoding strategies:
� Greedy straighforward
� Regex-based
� Manual customization

� Supported encoding strategies
� Format-based encoding
� Pattern-based encoding
� Manual customization

8-10 June 2010

Validation

� Robustness of the codec library is the key factor in the
robustness of the whole test system

� Test all components of the Codec Library during
development

� Test immediately
� Unit testing – tests for each method of each class

T3UC, Beijing

� Unit testing – tests for each method of each class
� Goal: 100% coverage of the source Java code
� Tools: JUnit testing framework, Eclemma coverage tool

� Test everything
� Integration testing – test how all components work together
� Goal: cover all variations of the inputs
� Tools: torture tests, loopback tests

8-10 June 2010

Case Study: IMS/SIP

� In 2009-2010 GO4ITC project implemented IMS/SIP
ETS
� Using TTworkbench IDE (Java)

� ETSI IMS/SIP test specification
� ETSI INT TS 102 790

LibSip library: 147 types

T3UC, Beijing

� LibSip library: 147 types

� Codec implemented
� Regular expressions: 306

� Templates: 148

� Manual codecs: 4 types (2.7%)

� Codec Validated
� Loopback tests and RFC 4475 SIP Torture tests

8-10 June 2010

Potential Directions for Future Work

� Extending the implementation

� Extending Java implementation

� Porting the Codec library to C/C++

� Extending the method

Grammar-based decoding strategy

8-10 June 2010T3UC, Beijing

� Grammar-based decoding strategy

� XML messages coding/decoding

� Binary protocols support

� Extending the usability

� Integrating with TTCN-3 development environments

