
Partners
France (jTest, INRIA) [6]- Europe (ETSI)

Germany (inno, Fokus) [2]- Spain (Cetecom)
China (BII, CATR, BUPT[3], IMU[5])

Russia (Ispras) [4]- Brazil (IPT)
Uruguay (InCo/UdelaR [1])

An open compiler for TTCN-3

Ricardo Rezzano (1), Ariel Sabiguero (1), Frank Le Gall (2),
Xiaohong Huang(3), Nikolay Pakulin(4), Xianrong Wang (5),
Anthony Baire(6)

picoTTCN-3 picoTTCN-3

● Ricardo Rezzano
InCo/Udela, Uruguay

● Ariel Sabiguero
InCo/Udela, Uruguay

● Franck Le Gall
Inno, Germany

● Nikolay Pakulin
ISPRAS, Russia

● Xianrong Wang
Inner Mongolia
University

● Anthony Baire
IRISA, France

Motivation

● TTCN-3 Background
– broad use of language
– limitations on use

● Language promotion needs and issues
– Start level

● complexity
● high price

– Research needs open source
implementations

Motivation

● How the free/open compiler helps to
promote the use of TTCN-3
– cheap entry level
– source code availability
– tool availability
– extensibility-standardization
– ...

Project identity card

• Integrated Infrastructure Initiative
– Started in Nov 2005
– 30 month FP6 project
–

• Partners:
– France (jTest, INRIA)
– Europe (ETSI)
– Germany (inno, Fokus)
– Spain (Cetecom)
– China (BII, CATR, BUPT, IMU)
– Russia (Ispras)
– Brazil (IPT)
– Uruguay (Inco – fing - UdelaR)

• Go4IT project provided Research Infrastructure users
with free TTCN-3 based IPv6 testing environment
including test tools, test suites and the related
services.

Concept
Fill product to market gap

Requirements

Product

From standard development to conformance testing

Development Testing

Standards

Tests Spec.

Standards Download TTCN-3 test suites
TTCN-3 test platform

Go4IT Approach

01 June 2006 © Go4IT 2005-2008 12

User needs surveys and analysis Package 1: quick release of ETS

Go4IT technical
roadmap & IPv6 “hot-topics”

Interoperability events
Package 2: launch of an

open-source test environment

Services delivery: documentation,
tools downloads, support to users

Executable TTCN-3
tools for IPv6 protocols

Open-Source TTCN-3
test environment

Users’ communitiesUsers’ communities

Communication
&

Dissemination

Website Registrations

• http://www.go4-it.eu
• Registration required for software downloads

Confirmed interest in solutions provided by Go4IT

Website Visits – Geographical
Distribution

Website Visits – City Distribution

Overview & Scope

● free/open compiler
– GNU GPL & Cecill license
– gnu technology

● A0 Scope
– Grammar coverage
– Technological limitations

Project Organization

● Project Goals
– Build an open TTCN-3 compiler for Go4IT
– Integrate the compiler to other Go4IT tools
– Use the new open compiler for Go4IT

specifics needs
● Steps/Modules/Teams

– How to divide the compiler tasks between
distributed teams

Project Organization-cont

● Teams & Tasks
– Inco/UdelaR, Coordination, Lexical &

Syntactical Analysis, Technical Orientation
– BUPT, Translation
– IMU, Run Time System
– INRIA, Coordination & Code QA
– ISPRAS, Automated Testing
– Other tasks

Project Organization-cont

● Methodology
– Modules Isolated development

● Internal Interface definitions
– Integration Activities

● Beijing Integration Activity
● Close integration remotely

● Coordination
– InCo/UdelaR and INRIA activities

Parser Step
● InCo/UdelaR

– Responsible for the Parser Module
– Build the Analysis Syntactical Tree (AST)

● Tools & Technology
– Experience & Research
– Bison/Flex

● Compiler Design
– Analysis Module
– Aid tools definition

Parser Step-cont
● Implementation Steps

– Experimenting with a small part of the
Language as PoC

● Selecting the grammar subset
● Specifying Lexical and Analytical rules
● Testing the results
● Build Aid Tools for repetitive tasks

– The full Parser
● Scope definition
● Compiler & Parser Design
● Methodology, use of Aid Tools built

Parser Step-cont

● Results
– The Parser ready (ISPRAS Test Cases 816

compiled and 43 rejected)
– Start Point for the other teams
– Use for dual compiler research and

prototype
● Lessons learned

– Aid Tools
– Development Life Cycle

Translation Step (CG)
● Responsible

– Beijing University of
Posts and
Telecommunications

– Code Generator (CG)
● Main task

– Produces C++ codes
based on Abstract
Syntactical Tree (AST)
and run-time libraries

– Link between AST and
run-time libraries
(T3RTS)

● Tools
– Developing language: C
– Debugger: gdb

TTCN-3

picoTTCN-3

Compiler

CG

C++

Translation Step (CG)-cont

First Step Second
Step Third Step

● Write C++ code
manually based
on T3RTS

● Including data
and TTCN-3
specific
constructs such
as alt, send and
receive

● Produce
manually
designed C++
code through
traversing syntax
tree

● Passing the
information,
such as module
parameters, to
T3RTS

● Debug
● Integration

with other
parts

Translation Step (CG)-cont
module DNSTester {
 type integer a_Message;

 }

class _DNSTester : public
T3RTSModule
{
public:
TciIntegerType *a_Message;
Virtual T3RTSParameterTypeList*
GetTestCaseParameters(TciTestCaseI
dType testcaseId);
virtual T3RTSPortIdList*
GetTestCaseTSI(TciTestCaseIdType
testcaseId);
_DNSTester();
~_DNSTester();
};

#include "ample.h"
extern _DNSTester DNSTester;
_DNSTester::_DNSTester()
{
TciModuleIdType definingModule;
definingModule.moduleName="DNSTester";
definingModule.objectName=NULL;
definingModule.aux=NULL;
a_Message = new TciIntegerType();
a_Message-
>TciInitIntegerType(definingModule,"a_Message",TCI
_INTEGER_TYPE,"ttlib",null,null);
}
}
T3RTSParameterTypeList*
_DNSTester::GetTestCaseParameters(TciTestCaseId
Type testcaseId)
{
return NULL;
}
T3RTSPortIdList*
_DNSTester::GetTestCaseTSI(TciTestCaseIdType
testcaseId)
{
return NULL;
}Example.h

Example.ttcn

Example.cpp

TTCN-3 Runtime System (RTS)

● Responsible
– IMU

● Main Task

– Definitions and implementations of internal interfaces in TE
● Internal interfaces between the T3RTS and ETS
● Isolate ETS, making the distributing of testing components transparent to ETS
● Translation step is simplified

– Definitions and implementations of Type/Value
● A public service with two functions

– Unify the components message format
– Uniform representation for information for the codec

● Type and value class hierarchy

– Tci_Type, correspond to ATS types

– Tci_Value, correspond to ATS values

– Implementations of TCI/TRI Required

TTCN-3 Runtime System (RTS)-cont
The functions of the main classes in RTS

class functions
T3RTSModule Represents a TTCN-3 module.

This is an abstract base class which is reimplemented in the generated
ETS. The derived classes contain all the TTCN-3 definitions present in
the module.

T3RTSComponentType holding information about a component type

T3RTSPortType Class holding information about a port type
T3RTSComponent This class is abstract. Possible implementations are

T3RTSSystemComponent and T3RTSLocalComponent.

T3RTSLocalComponent It is used for the Control Component, MTC and the PTCs run by the
local runtime system

T3RTSBehavior It is a base class and the actual behaviors defined in ATS should be
derived from it.

T3RTSTestCase ETS should define the behavior classes described in ATS by deriving
from this class directly or indirectly.

T3RTSPort This class is abstract. Possible implementations are
T3RTSSystemPort and T3RTSLocalPort.

T3RTSTimer The class defines the timer in ATS
T3RTSMessage TTCN-3 messages can be represented in two ways: either with an

abstract TTCN-3 value or with a binary string .

RTS using the sample
 module DNSTester {

 type integer Identification (0..65535);

 type enumerated MessageKind

 type record DNSMessage { }

 template DNSMessage a_DNSQuestion

 (Identification p_id, Question p_question):=

 type port DNSPort message

 type component DNSClient

 testcase ExampleResolveNokia3() ...

 { timer replyTimer;

 }

 Control

 {execute (ExampleResolveNokia3());}

 } with { encode "ttlib" }

class _DNSTester :public T3RTSModule

{public:

 class _ExampleResolveNokia3

 :public T3RTSTestCase

 { };

 TciIntegerType Identification;

 TciEnumeratedType MessageKind;

 TciRecordType DNSMessage;

 TciRecordType *a_DNSQuestion;

 T3RTSPortType DNSPort;

 T3RTSComponentType control, DNSClient;

 class _control:public T3RTSBehavior

 {...... };

};

Automated Testing

● ISPRAS
● Grammar based testing

– Tool for generate test cases
● Test Cycles
● Testing Results

– 816 compiled and 43 rejected
– For the 43 rejected 40 are grammar

variations that are not supported in A0, the
rest are empty constructions unused.

Today Status of picoTTCN-3

● Final Status of the project
– A0 operative
– DNSTester running

● dual API for platform interoperability
– picoTTCN-3 was used to experiment with

the dual platform solution

Main Lessons Learned

● Distributed and Multicultural teams
– Communication
– Formality
– Methodology
– Standard processes and documents

● Extended tools to build compilers
– Tools for transform BNF into Bison and Flex

specifications

Further Activities

● Search of new partners
– To finish the open points
– To use the compiler for research proposes
– To use the compiler for educational

proposes
● Pending activities

– Finish OO approach
– Finish grammar rules

Thank you!
rrezzano@fing.edu.uy

	页 1
	页 2
	页 3
	页 4
	页 5
	页 6
	页 7
	页 8
	页 9
	Slide2
	Slide5
	Slide6
	Slide3
	页 14
	页 15
	页 16
	页 17
	页 18
	页 19
	页 20
	页 21
	页 22
	页 23
	页 24
	页 25
	页 26
	页 27
	页 28
	页 29
	页 30
	页 31
	页 32
	页 33

