
TUTORIAL: TTCN-3 and its role and usage in

MBT from the D-MINT perspective

T3UC 2009

Thomas Bauer, Axel Rennoch
Fraunhofer IESE & FOKUS, Germany

Presentation Overview

• Basic terminology

• Techniques

• TTCN-3, UTP, MiLEST, TPT, Statistical testing

• D-MINT

• Introduction + scope

T3UC 2009

• Introduction + scope

• Industrial domains + case studies

• Evaluation processes

• Summary + outlook

Presentation Overview

• Basic terminology
• Techniques

• TTCN-3, UTP, MiLEST, TPT, Statistical testing

• D-MINT

• Introduction + scope

T3UC 2009

• Introduction + scope

• Industrial domains + case studies

• Evaluation processes

• Summary + outlook

Current Situation for Software-Based Systems

Number of successful software projects still less than 1/3

Software Project Success

20%

40%

60%

80%

100%

Critical defects typical in early phases

Defect Correction Costs

T3UC 2009

0%

1994 1996 1998 2000 2002 2004 2006

Successful Failed Out of time/budget

Test as early and as continuously as possible
Before the code is available

Example: Ariane 5

• Ariane 5 Flight 501 on 4 June 1996 failed

• Weight: 740 t, Payload: cluster satellites

• Rocket self-destructing 37 seconds after launch
because of a malfunction in the control software

• Most expensive computer bug in history:
370 Mio $

• Causes

...

declare

vertical_veloc_sensor: float;

horizontal_veloc_sensor: float;

vertical_veloc_bias: integer;

horizontal_veloc_bias: integer;

...

begin

declare

pragma suppress(numeric_error,

horizontal_veloc_bias);

begin

ADA Code of 2nd channel

T3UC 2009

• Reused software from Ariane 4

• Data conversion from 64-bit float to 16-bit signed
integer � overflow / not caught

• ADA software with 2 channels (redundancy), but
identifical implementation!

• 1st channel had same problem 72ms before

• Software handler got exceptions from both
channels, no Plan B for such situations

• Main computer interpreted horizontal velocity and
sent strange control command

• Self-destruction due to safety issues

begin

sensor_get(vertical_veloc_sensor);

sensor_get(horizontal_veloc_sensor);

vertical_veloc_bias :=

integer(vertical_veloc_sensor);

horizontal_veloc_bias :=

integer(horizontal_veloc_sensor);

...

exception

when numeric_error => calculate_vertical_veloc();

when others => use_irs1();

end;

end irs2;

.

Horizontal velocity
> 32786.0 internal unit

Unclassified Exception caught ����
Control transfer to 1st channel

* source: http://www-aix.gsi.de/~giese/swr/ariane5.html

Make Sure You Have the Right Method, Technology, Tool!

T3UC 2009

Borrowed from M. Berglund, Ericsson, T3UC 2007

Make Sure You Have the Right Method, Technology, Tool!

T3UC 2009

Make Sure You Have the Right Method, Technology, Tool!

T3UC 2009

Make Sure You Have the Right Method, Technology, Tool!

T3UC 2009

Make Sure You Have the Right Method, Technology, Tool!

T3UC 2009

Make Sure You Have the Right Method, Technology, Tool!

T3UC 2009

Make Sure You Have the Right Method, Technology, Tool!

T3UC 2009

Make Sure You Have the Right Method, Technology, Tool!

T3UC 2009

Make Sure You Have the Right Method, Technology, Tool!

T3UC 2009

Make Sure You Have the Right Method, Technology, Tool!

T3UC 2009

Model-based Testing

• Model-based testing = test generation from models
• ”Model-based testing is concerned with comparing models with realizations

using automatically generated and executed test cases.” – Tretmans

• ”Model-based testing is a variant of testing that relies on explicit behaviour
models that encode the intended behaviour of a system and possibly the
behaviour of its environment.” – Utting, Pretschner, Legeard

• Data Models / Input domain models

T3UC 2009

• Data Models / Input domain models
• System structure/interface models

• e.g. equivalence class partitioning

• System behavior models
• e.g. state machines

• can be used as test oracles

• Environment Models
• (Probabilistic) descriptions of the stimulation by the system environment

• e.g. Markov chains

Test automation
•Test generation

•Test execution (platform)
•Test evaluation

Model: Characteristics

T3UC 2009

Model: Reuse existing Development Models

Requirements

System Model

construct

T3UC 2009

Code Test Cases

generate /

implement generate/select

Check code generator, test case

generator, environment assumptions

Model: Construct separate Test Models

T3UC 2009

Presentation Overview

• Basic terminology

• Techniques

• TTCN-3, UTP, MiLEST, TPT, Model-based Statistical testing

• D-MINT

• Introduction + scope

T3UC 2009

• Introduction + scope

• Industrial domains + case studies

• Evaluation processes

• Summary + outlook

Make Sure You Have the Right Tool!

T3UC 2009

� A test modelling and test implementation

language

• The Testing and Test Control Notation

• A standardized alternative to proprietary test systems
� Developed by a large group of testing experts

� Used by a growing community

� Proven by tools

� Maintained at ETSI

Test Technology

Enabling a testing middleware

T3UC 2009

� Maintained at ETSI

• A test specification and implementation language
� A multipart standard covering

� textual TTCN-3 core

� graphical TTCN-3

� execution interfaces (TRI and TCI)

� language mappings to TTCN-3, e.g. for IDL

- unifying methods, tools,

test infrastructure,

documentation & training

- by domain-specific profiles

Placement of TTCN-3

B) Component Provider C) Solut ion Provider

Solut ion
Deployment

Development
Process

Funct ionality Interop./Integr.

Products

B) Component Provider C) Solut ion Provider

Solut ion
Deployment

Development
Process

Funct ionality Interop./Integr.

Products

� Areas of Testing

� Regression Testing

T3UC 2009

Test
Execution

Product /Component

Specif icat ion

A) Forum

Standardizat ion

Specif icat ion Specif icat ion

Test
Execution

Product /Component

Specif icat ion

A) Forum

Standardizat ion

Specif icat ion Specif icat ion

� Regression Testing

� Conformance/Functionality

Testing

� Interoperability/Integration

Testing

� Load/ Stress Testing

Main Capabilities of TTCN-3

• Dynamic concurrent test configurations

• Synchronous and asynchronous

communication mechanisms

• Encoding information

• Data and signature templates with powerful

matching mechanism

T3UC 2009

matching mechanism

• Assignment and handling of test verdicts

• Testcase selection mechanisms

• Test suite and test data parameterization

A TTCN-3 Test System

TE – TTCN-3 Executable

SA – System Adapter

PA – Platform Adapter

CD – Codec

TCI

Test System User

CDCH

TM

TE

T3UC 2009

TM – Test Management

CH – Component Handling

SUT – System Under Test

ETSI ES 201 873-1 TTCN-3 Core Language (CL)

ETSI ES 201 873-5 TTCN-3 Runtime Interface (TRI)

ETSI ES 201 873-6 TTCN-3 Control Interfaces (TCI)

TRI

SUT

PASA

Test System

Test Execution with TTCN-3

TE

T3UC 2009

System Under Test
evaluation

communication

An Impression of TTCN-3 Tooling

Result
Analyzer

Test Execution

Developers
Perspective

for Modification

T3UC 2009

Online Logging,
Filter, Reporting

Test Report

Test Execution

Test Campaign
Designer

(Test Automation)

Test
Parametrization

The TTCN-3 pyramid

Domain-specific solutions
TTCN-3 test suites

Customer-specific
solutions

Professional services

T3UC 2009

Generic test automation platform

TTCN-3

Domain-specific adaptations
TTCN-3 test frameworks

Example Usage in Automotive

Work in ITEA project TTmedal

Telematics Applications

• Audio (CD / Radio)

• Telephone

• Navigation

• Video

• Speech recognition

• Short messaging (SMS)

• User interface for body electronic

T3UC 2009

• User interface for body electronic

Defined in XML

loudness
playCDTitle

Test case:

MOST Bus

Head Unit

TesterTesterTesterTester

Speaker

Amplifier /
Tuner

CD Changer

© DaimlerChrysler

AUTOSAR adopted TTCN-3

• Other usages

• telecommunication

• cockpit applications
– MOST Forum

• avionics systems
– ESA

• medical devices

T3UC 2009

• medical devices
– HL7

• power tranmission
systems

• smart cards

• transport

• financial systems

• ...

TTCN-3 today

• A successful testing technology

• Used in telecommunication, software industry, automotive

• A textual and graphical test scripting language

• Human readable

T3UC 2009

• A test implementation language

• Automated test execution is built-in

• A test realization framework

• A variety of ready-to-use tools and test assets provided by an agile
community

• A philosophy

• Specifically made for testers

Presentation Overview

• Basic terminology

• Techniques

• TTCN-3, UTP, MiLEST, TPT, Statistical testing

• D-MINT

• Introduction + scope

T3UC 2009

• Introduction + scope

• Industrial domains + case studies

• Evaluation processes

• Summary + outlook

The Testing Profile Roots

• Test control
• Wildcards

• Defaults
• Test components

• Arbiter

• Validation actions
• Data pools

T3UC 2009

P
ro

to
c
o

l
T
e
s
ti

n
g

lik

e
 T

T
C

N
-3

S
o

ft
w

a
re

 T
e
s
ti

n
g

lik

e
 J

U
n
it
,
T

E
T
,
e
tc

.

MSC-2000 UML 1.x SDL-2000MSC-2000

UML 2.0
Graphical Format

of TTCN-3

UML
Testing Profile

1st Root: TTCN-3
• The new standardised test specification and test

implementation language

• Developed from 1999 – 2002 at the European
Telecommunications Standards Institute (ETSI)

• Developed based on experiences from previous

TTCN editions

T3UC 2009

• Removal of OSI specific concepts; Improvement of
concepts; Introduction of new concepts

• Applicable for all kinds of black-box testing for

reactive and distributed systems, e.g.,
• Telecom systems (ISDN, ATM, GSM, UMTS); Internet (IP, IP

based protocols and applications); Software systems (Java, XML);
Middleware platforms and component-based systems (CORBA,
.Net, EJB)

Tabular
Format

Other Types
& Values 2

IDL

ASN.1
Types &
Values

TTCN-3
Core

Notation

TTCN-3

msc mi_synch1_conc1

mtc ISAP1 MSAP2

T3UC 2009

Presentation
Format n

Graphical
Format

Other Types
& Values n

Presentation
Format n
UML

Testing
Profile

C, C++,
JAVA

XML

:

testcase myTestcase () runs on MTCType system TSIType

{ mydefault := activate (OtherwiseFail);

verdict.set(pass);

:

connect(PTC_ISAP1:CP_ISAP1,mtc:CP_ISAP1);

:

map(PTC_ISAP1:ISAP1, system:TSI_ISAP1);

:

PTC_ISAP1.start(func_PTC_ISAP1());

PTC_MSAP2.start(func_PTC_MSAP2());

Synchronization();

all component.done;

log(”Correct Termination”);

}

:

2nd Root: UML 2.0

• Developed by OMG (Object Management Group)

1999-2004, adoption June 2003, available 2004

• UML 2.0 Infrastructure RFP

• metamodel restructuring in order for Core to be reusable by
other OMG languages

T3UC 2009

other OMG languages

• UML 2.0 Superstructure RFP

• new and improvement/extension of UML concepts

• UML 2.0 OCL RFP

• defining an OCL metamodel

• UML 2.0 Diagram Interchange RFP

• ensuring diagram interchange between different tools

UML 2.0 Improvements

• More unified conceptual base

• Parts in Internal structure, Collaborations, Use cases and indirectly in
Interactions

• More unified semantics

• Higher precision

• Improved expressiveness

T3UC 2009

• Improved expressiveness

• Structured Classes, Sequence Diagrams and Statemachines

• Activities merged with actions

• Collaborations aligned with structured classes

• Patterns (templates) and frameworks support

� More powerful and expressive than UML 1.4

� Tighter and more consistent than UML 1.4

� Executable UML becomes possible

UML 2.0 Profiles

• Use of UML in

• Analysis

• Design/implementation

• Directly executable notation

(eg xUML)

• Architecture description

• UML has many “semantic-free

zones”, so called “semantic

variation points”

• E.g. detailed semantics of

state machines, ...

� Profiles

T3UC 2009

<<TestContext>>

ATM

• Architecture description

• Process engineering,

workflow

• Website structures

• Data Modeling

• with obviously different (and

inconsistent) semantics

• Specializations of UML by

stereotypes, providing special

semantics

UML 2.0 Profile Walkthrough (1)

• Define profile(s)

• based on reference metamodel

• may use other packages for its definition

Metamodel
«profile»

Extension

T3UC 2009

«profile»
U2TP

«profile»
Java

UML

«reference»
«reference»

JavaTypes

«import»

Metamodel
«profile»

U2TP

«metaclass»
StructuredClassifier

«stereotype»
TestComponent

zone: TimeZone[0..1]

UML 2.0 Profile Walkthrough (2)

• Specify model

• based on UML metamodel

A class definition

T3UC 2009

BankTest

-pinOk : Boolean

-enteredPIN : String

-message : String

HWEmulator

hwCom
IATM

IHardware

UML 2.0 Profile Walkthrough (3)

• Apply profile(s) to model

• make it possible to apply stereotypes of the profile

to the model elements

«profile»

T3UC 2009

«profile»
U2TP

«apply»

BankTest

-pinOk : Boolean

-enteredPIN : String

-message : String

HWEmulator

hwCom
IATM

IHardware

UML 2.0 Profile Walkthrough (4)

• Apply stereotypes to model elements as

desired

«profile»
U2TP

T3UC 2009

BankTest

«apply»

-pinOk : Boolean

-enteredPIN : String

-message : String
-t1 : Timer

«testComponent»
HWEmulator

hwCom
IATM

IHardware

zone = Stuttgart

Concepts of the Testing Profile

• Test architecture

• Test structure, test components and test configuration

• Test data

• Data and templates used in test procedures

T3UC 2009

• Test behavior

• Dynamic aspects of test procedures

• Test time

• Time quantified definition of test procedures

Test Architecture Realization

• System Under Test (SUT)

• Test components

• Test context with test configuration and test cases

• Test verdict arbitration with arbiter

• Test coordination with scheduler

T3UC 2009

Test Data Realization

� Individual coding rule definition

� Wildcards * and ?

� Concrete test data with data pool, data partition and data selector

Test Behavior Realization
• Test objectives

• Test cases

• Test verdicts: pass, fail, inconclusive

• Defaults behaviors on different levels

• Utility part

T3UC 2009

Test Time Realization

� Clock

� Timezone definition for synchronizing test components

� Timer operations

Concepts beyond TTCN-3

• Unification of test cases:

• Test case as a composition of test cases

• Test behavior defines the execution of a test case

• Separation of test behavior and verdict handling

• Arbiter is a special component to evaluate the verdict

• Validation actions are used to set the verdict

T3UC 2009

• Validation actions are used to set the verdict

• Abstract test cases that work on data partitions rather than individual
data

• Data partitions to describe value ranges for observations and stimuli

• Test architecture with test deployment support

• Part of the test specification is the definition of deployment requirements

for a test case

Concepts beyond UML

• Defaults within test behavior

• Concentration on main flow of test behavior

• Default hierarchy to handle different concerns

• Wildcards within test data

• Flexible definition of value sets

• Timers and time constraints

T3UC 2009

• Timers and time constraints

• Time controlled test behavior

• Arbitration and verdicts

• Assessment of test behavior

• Coding attributes

• Encoding/decoding for data exchange with the SUT

Presentation Overview

• Basic terminology

• Techniques

• TTCN-3, UTP, MiLEST, TPT, Model-based Statistical testing

• D-MINT

• Introduction + scope

T3UC 2009

• Introduction + scope

• Industrial domains + case studies

• Evaluation processes

• Summary + outlook

Model-based Statistical Testing (MBST)

• Definition

• Usage-oriented black box testing

• Testing = statistical experiment

• Selection, execution, and evaluation of a representative subset of software
input/output trajectories

• Analysis of sample to produce reliability estimates

• Approach

• Focus: Model Construction (not manual test case generation)

T3UC 2009

• Focus: Model Construction (not manual test case generation)

• Building a Test Model based on the requirements

• Considering operational / usage profiles

• Test automation (=automated test generation, execution, evaluation)

• Applying statistics for

• Test model building and model analysis

• Generating Test Cases (test model paths)

• Test analysis and reliability estimation

Steps of MBST

Requirements
Documents

Black Box
System

Specification
Test Cases Test Results

1

����

����

Reliability+
Risk Coverage

Estimation

Sequence-based
Specification (SBS)

Usage Modeling

probabilities, risk,
criticality, cost

Automated
Test Generation

Automated
Test Execution

Automated
Test Evaluation

Test Model

Debug+Correction
Re-executing Tests

Test Model
Validation

T3UC 2009

Interfaces
System usages

Expected responses

Textual,
System+Domain

Knowledge

Executable test
scripts on target

platform

1. step1
2. step2
3. step3
4. step4

Management
decisions

Test stopping
criteria

1. ok
2. ok
3. failed
4. ok

t

1

����

Test Model Building Automated Testing

Markov Chain
Usage Model

Changing
Test Case Set

Changing
Test ModelChanging

System
Specification

Passed / failed
test steps

Improving
Requirements

Introduction to Sequence-based Specification (SBS)

• Systematic inspection of
requirements to develop a
complete and consistent
specification

• Finding relevant input
sequences (stimuli) and

Requirements

Determine System
Boundary

Determine
Output + Equivalence

Analyze Sequences
(Length=1)

Sequences can

T3UC 2009

sequences (stimuli) and
expected responses (test
oracle)

• Mapping: Stimulus sequences -
> Responses

• Development of a state-based
model that implements the
mapping

Analyze Sequences
(Length++)

Generate
State-Based Model

+ Start + End state

+ Transition Weights (Usage Profiles)

+ Test Runner Scripts

Model Analysis

Extension of

sequences finished

Sequences can

be extended

Test Model

Test Model
Model Analysis
Test model complexity
Expected Test Case Length
Occurrence of states, transitions, stimuli

…

T3UC 2009

Minimum state machine that implements the
specified black-box behavior

+ additional states for test beginning & end
+ usage profiles (transition probabilities)

START.PH

Automated Test Case Generation

• Model coverage
• Coverage of model elements (states,

transitions)

• Minimum number of test cases and test steps

• Random tests
• Considering transition probability

• Generation of representative test case due to
usage profile

• Weighted tests
• Considering probability, cost, value of

transitions

T3UC 2009

transitions

• Generation of test cases with minimized or
maximized sums or products of transitions
attributes

• Manual tests
• Required by standards, guidelines

Test Plan
Model Coverage (here: 23 test cases)

Random tests to achieve desired
reliability (here: 1000 test cases)

Test Cases
Recorded 1,023 cases / ~16000 stimuli

Node coverage 23 nodes (100%)

Arc coverage 304 arcs (100%)

Stimulus coverage 24 stimuli (100%)

Abstract vs concrete tests
•paths in the model

(=sequence of stimuli)

•executable test scripts

Reliability Estimations

Stimulus
Reliabilities

Gen Exec Fail
Actual

Reliability
Optimum
Reliability

• Reliability in statistical testing: Probability of failure-free operation / use (0..1)

• Input parameters:
• Number of failures
• Number of test cases
• Prior information about system reliability in the past

• Reliability estimations for
• Model elements (stimuli, transitions)
• System/test object usages (input sequences)

T3UC 2009

Reliabilities
Gen Exec Fail

Reliability Reliability

MHL 841 841 6 0.979191 0.986127

PH 1,028 1,028 0 0.981273 0.981273

System
Reliabilities

Actual
Reliability

Optimum
Reliabiliy

Single Event Reliability 0.981500 0.982900

Single Use Reliability 0.892600 0.900700

•Single Event Reliability

•Probability that next randomly
selected stimulus will not produce a
failure

•Single Use Reliability

•Probability that next randomly
generated test case (system use) will
not produce a failure

Presentation Overview

• Basic terminology

• Techniques

• TTCN-3, UTP, MiLEST, TPT, Statistical testing

• D-MINT

• Introduction + scope

T3UC 2009

• Introduction + scope
• Industrial domains + case studies

• Evaluation processes

• Summary + outlook

Project Goals

•• To develop the methodologies, tools To develop the methodologies, tools
and industrial experience to enable and industrial experience to enable
European industry to test more European industry to test more
effectively and more efficientlyeffectively and more efficiently

T3UC 2009

effectively and more efficientlyeffectively and more efficiently

•• To drive the deployment of ModelTo drive the deployment of Model--
based testing technology into based testing technology into
European industryEuropean industry

Project Partners

T3UC 2009

Project Relevance

• The importance of software in product
development is increasing

• 40-60% of product development costs goes
in testing

• New testing technology has the potential to

T3UC 2009

• New testing technology has the potential to
save 25-50% of testing costs
“The use of models pays off when it comes to detecting

failures by means of model-based tests”¹

• Improving testing will directly impact
European Industrial competitiveness

¹One Evaluation of ModelBased Testing and its Automation; A. Pretschner et al ICSE 2005

Project Relevance

Number of successful software projects still less than 1/3¹

Software Project Success

60%

80%

100%

T3UC 2009

¹The Standish Group 2006; The Chaos Report

0%

20%

40%

60%

1994 1996 1998 2000 2002 2004 2006

Successful Failed Out of time/budget

Vision

Class diagram modelsClass diagram models

Simulink modelsSimulink models

Models SUTs

TPT model

T3UC 2009

CamelView model

D-MINT Test
Framework

Stateflow modelsStateflow models

Interaction modelsInteraction models

Use case modelsUse case models

Test cases

Architecture

ST test model

Project structure

WP4
Exploitation

WP3 Test
Tool Chain

WP1
Industrial

Case Studies

WP2 Test
Principles &

Methods

WP5
Dissemination

T3UC 2009

Model-Based Testing

Test Designer Test Designer Tester

Requirements

System
models

Architecture models

D-MINT FOCUS

T3UC 2009

Design
test model

Define
test objectives

Generate
test cases

Generate

test scripts

Execute

test scripts

Evaluate

test results

Graphical editor Test implementation

tool

Test execution

tool

Test management

tool

Test case

generator

Test management

toolGuideline checker

Cook book

Test modelling techniques

• Modelling techniques used and developed:

• Continuous systems:

• Time-Partition-Testing (TPT)

• Model-in-the-Loop for Embedded System Test (MiLEST)

• Hybrid and discrete systems:

T3UC 2009

• Hybrid and discrete systems:

• UML Testing Profile (UTP)

• UML Testing Profile for Embedded Systems (UTPes)

• UML Test Modelling Language (UTML)

Systems under test are

• signal driven and/or event driven
• large interfaces
• timing complexity (sequences, temporal conditions, signal

processing etc.)

MBT for Testing Embedded Controllers

ECU

gas pedal

brake pedal

wheel speed

...

T3UC 2009

processing etc.)
• Noise
• Monotony
• Sequences (off � on � off)
• Duration

• hybrid systems (mixture of
continuously changing, discrete
quantities, events and messages)

� Difficult to cope with conventional test methods

MBT for Embedded Controllers

Test object

in
p

u
ts

o
u

tp
u

ts

BRAKE_V
G_SOLL
PW_V

N_MOT
V_KFZ

Test case

Modeling
Concept:

T3UC 2009

Interface test object ↔ TPT test case is based on
named variables

Test cases stimulate the test object by
continuously affecting system quantities (inputs).

Test case

Test cases can react to system behavior by
observing system quantities (outputs).

TPT – Test modeling

Language properties
Graphical test case modeling

Based on automata (hybrid, hierarchical, parallel)

Support a natural way of continuous signal definitions

T3UC 2009

Support a natural way of continuous signal definitions

Usage of natural language for description

Formal details are hidden behind graphics

Advantages
Clear structured and easy to learn

Easy to read even for non-programmers

Compact (complexity of test cases is comparatively low)

TPT Features

Bringing these properties together as far

Automated tests (from test execution

to test report)

Platform independent

Consistency from model to

1. Automation

2. Consistency

3. Systematic testing

Requirements: Features:

T3UC 2009

Bringing these properties together as far

as possible

is the purpose of TPT.

Consistency from model to

assessment and report

Abstract test language

Systematic test case definition

Intuitive graphical models

Reactive tests supported

Continuous behavior testing

4. Readability

5. Reactive tests

6. Real-time and continuous

behavior

Test generation

• Example MiLEST:

• Continuous and discrete signal flows

• Test harness generation and execution

• Realization in ML/SL

T3UC 2009

MiLEST Summary

Benefits:

� Testing in early design stages

� Test of hybrid systems including

temporal and logical dependencies

� Traceability of test cases to the

requirements; verdicts to root faults

� Increased test coverage and test
completeness

� Assured test quality of the test

specification

Features:

� Systematic, consistent functional test

specification

� Signal’s feature - oriented paradigm

� Graphical test design

� Test process automation

� systematic and automatic test data

generation

� online automatic test evaluation

� Model-in-the-Loop test execution

T3UC 2009

� Model-in-the-Loop test execution

� Reusable test patterns

� Abstract and concrete views

Test prioritization and selection

?
Expert

knowledge

1

����

Automated
Test Case Generation

Automated
Test Execution

Semi-automated
Test Model Building

• Extension of statistical testing with risk-based

considerations

T3UC 2009

Requirements

Test casesTest Model with
Risk profile

Sequence-based
Specification

Risk Analysis

t

1

����

����

Quality Estimation

Automated
Test Evaluation

Fault Tree Analysis

Risk = expected cost of a failure

= Probability of occurrence (x) impact/cost

Presentation Overview

• Basic terminology

• Techniques

• TTCN-3, UTP, MiLEST, TPT, Statistical testing

• D-MINT

• Introduction + scope

T3UC 2009

• Introduction + scope

• Industrial domains + case studies
• Evaluation processes

• Summary + outlook

Application Areas

T3UC 2009

Daimler automotive case study

Daimler-

Architecture-
based approach

Test cases to be
executed in HIL
test environment

Daimler focus in D-MINT

Test script
generation

Exterior door mirror

Car electronics
architecture

T3UC 2009

Test cases

Daimler-
internal

TestSpec
formalism

Usage-based
approach

Covering

• model lines

• test stages

Test execution &
evaluation

PROVEtech:TA

As target
container for

the test cases

dSpace tools

generation
architecture

Test model

Blinker

Simulink/Stateflow modelRequirements

NSN telecom case study

• Focus is on model-based test case design,

but test execution and evaluation is also taken into account

• Goal is to reduce costs for test case design by means of model-based test approach

• Network element under test is the Mobile Switching Server (MSS):

responsible for establishing calls and to control the handover of mobiles among different cells

• Three MSS features will be tested: location update, voice call, handover

• Models in use: UML state charts, the MSS is described with this

� Models are built and test cases are generated with QTronic tool

T3UC 2009

� Models are built and test cases are generated with QTronic tool

Test environment for MSS

ABB production engineering case study

• System under test is a soft starter

(a device to smoothly start and stop an electrical motor)

• Design models in use: UML use cases and class diagrams

• Test model in use: usage model

� Test model derived from requirements and UML models,

then test cases are derived from test model and exectuted

SUT

T3UC 2009

ABB production
engineering

demonstrator

T3UC 2009

ITEA
Symposium

2008
Rotterdam

Test generation

+
Configuration Behavior

T3UC 2009

Configuration Behavior

TTCN-3

Test cases

ETSI telecom case study

• The interoperability of IP Multimedia Subsystem (IMS) networks will be tested

• The case study focuses on the assessment of interoperability of basic services

(such as basic Voice over IP (VoIP) call and instant messaging between two

distinct IMS networks)

• Both functional and conformance tests

� UML state charts are used to model the SUT, test cases are derived from this

SUT: System of 2 IP Multimedia networks

T3UC 2009

ETSI Case Study: Overview

System &

Test Model

Qtronic

(State-Based)
TPLan

System

Req.

Test DescriptionsCoverage Analysis

T3UC 2009

Test

Purposes

Test Model Test

Scripts

(e.g., TTCN-3)
UTML

(Sequence-Based)

The ETSI Case
Study Path

manual

automatic

a1 a2

Folie 79

a1 Not sure, if this arrow is needed. Is this a transformation or are these two items equivalent ?
alain; 27.01.2009

a2 I was told (by Axel), that this option has been used exceptionally in this case study and that the "normal" way was to use system
requirements as input for Qtronic modelling. Does it mean, that the vision is to generate TPs (TPLan) from Qtronic test descriptions and
that the manual step of deriving TPs from requirements will not be required anymore?
alain; 27.01.2009

ETSI Case Study: Example

Qtronic

(State-Based)
TPLan

UTML

T3UC 2009

UTML

Pattern-Oriented

(Sequence-Based)

Qtronic@ETSI Case Study: Status

• Automatic generation of ETSI defined Test Purposes
(TP) for the 3GPP IP Multimedia Subsystem (IMS)

• Conformiq was to create a model that would cover the

TPs from the existing ETSI TP documentation
(DTS/TISPAN-06035-2 V002F)

• The TPs described in the documentation are written for
IMS core network functionality that is accessible through

T3UC 2009

IMS core network functionality that is accessible through
SIP based interfaces

• All generated test purposes were presented in HTML
format for manual inspection and comparison against
existing TPs

UTML Implementation status

• UTML Metamodel: Done, open for improvements

• Prototype Tool Chain Architecture: Done

• Prototype Tool Chain Implementation: Version

1.4.0

• New Features

T3UC 2009

• New Features

• Test Model Quality

• New OCL-Constraints

• HTML-Reporting for statistics and documentation

• Comparison of test models

• To trace changes

• For version checking

• Allows parallel processing of test model in teams

MDTester: OCL-Based Test Model Quality Check

• 25 Built-in OCL-

Constraints

• API allows for

further OCL

queries/check to

T3UC 2009

be added for

validation or

statistics

MDTester: Structural Comparison of Test Models

T3UC 2009

Activities

• UTML Web Site

• English version online, but not yet published

• Deutsch: Work in progress

• MDTester 1.0.0 Release to share IMS Test Model

• Implementation & Bug fixes

• Update site for Installation: Done

T3UC 2009

• Update site for Installation: Done

• User Guide and Installation Manual

• Outlook

• Front-End Plugin for Automated Transformation From
TTCN-3 (e.g. Test Data, Test Behaviour model)

• Further Back-End Plugins to export into other notations

Soraluce/Ideko production engineering case study

• SUT: DIGITMILL mechatronic solution as part of a milling machine

• Focus in this case study is to get a more systematic test process based on MBT

• Models in use: several UML diagrams (component, architectural, sequence, state diagrams)

� Test case derivation from UML diagrams

T3UC 2009

SUT: DIGITMILL

Trimek/Datapixel production engineering case study

• SUT: Coordinates Measuring Machines (CMM) control software (CDMS)
for controlling a measuring system

� Focus: test case derivation from UML models

• Models in use: UML class, sequence, state diagrams

SUT: measuring system

T3UC 2009

TTCN-3 @ Trimek/Datapixel

T3UC 2009

Eliko case study: Street Lighting System

T3UC 2009

Demonstrator

T3UC 2009

Demonstrator general architecture

Poseidon

Elvior Test Generator

TTCN-3 test cases

MessageMagic

MessageMagic-LabView

TRITRITRITRI interface System Adapter

NModel

C# editor

Model Programs in C#

SUT state model

SUT interface definition

T3UC 2009

GPIB/USBGPIB/USBGPIB/USBGPIB/USB

MessageMagic-LabView
adapter

FBCU Control and Measurement (LabVIEW)

MessagesMessagesMessagesMessages overoveroverover TCP/IPTCP/IPTCP/IPTCP/IP

Power supply module

USBUSBUSBUSB

Digital/analog module

FBCU (SUT)

Hardware adapter

NModel-LabView adapter

Eliko city street lights case study

• SUT: Eliko street lighting control system feeder box control unit (FBCU)

• Models for the SUT: UML state charts, produced with tool Poseidon

� Elvior test generator derives TTCN-3 test cases from state charts

SUT: Feeder box control unit Test system architecture

T3UC 2009

AddOn: Test quality

• TTCN-3 testcase behaviour -> Control flow graphs (CFG) -> Contraints finder

• CFG complexity (analysis) indicator -> recommend simplification

• Guideline checker (naming conventions)

T3UC 2009

Tandberg case study

• SUT: Video conferencing systems with support for
multiple simultaneous calls and presentations

� Focus: Model-based functional, stress, and robustness testing

• Models in use: UML state machines, sequence diagrams
(and profiles such as MARTE and UML Testing Profile)

T3UC 2009

Case studies approach

Design/development
models

T3UC 2009

Requirements

Test model

Test cases

Common System Architecture Framework

Functions offered

from the user’s point of view

(functionality the user can see)

Functional blocks and their interconnections
realizing the above functions

– without any specific technical (e.g. hardware)

aspects

T3UC 2009

Assignment of the functional blocks,

communication channels to real hardware
adding and respecting technical

requirements

Taking into account the locations /

geometry of the hardware and its wiring

D-MINT COMMON APPROACH

Commonality

PROCESS
Requirement
Documenta-

tion

Modeling
for Test

Derivation

Test
Derivation

Test
Implemen-

tation

Test
Execution

Test
Reporting

METHODS
Structured

Requirements

Architecture based;
Behavior modeled by

state chart, sequence

Test cases derived
from architecture

Abstract test cases in Abstract test cases in
a test model or test

specific language Online,

Pass/Fail;

Statistical

analysis;

ABSTRAC-
TION

Abstraction Level: System Architecture

Viewpoints: Requirements (all), Logical (all), Technical (most) , Topological (possibly of interest, but not realized)

T3UC 2009

NOTATION

TOOLS

Textual format

Text based tools

UML;

SYSML;

Domain specific

languages;

Model

Annotations for

priority

MagicDraw, EA,

StarUML

TTModeler,

MySQL,

Jumbl,

TPT,

PreeVision

QML

TTCN-3

Toolspecific

Qtronic,

TTModeler,

PreeVision

QML

TTCN-3

Toolspecific

Qtronic

TTWorkbench

Jumbl

TPT

(PreeVision,

OpenOffice)

Machine code

java byte code

EAST scripts

Qtronic

EAST

TTWorkbench

iXtronics Testrig

METHODS
(P: Priority,
Q: Quality,

M: Methodology)

(Sometimes up to

“Precondition,

Event, Reaction”

formal level)

state chart, sequence

charts or signal flows;
Priority by

annotations of usage,
risk, safety,…

from architecture
models and behavior

with respect to
annotated priorities

and coverage criteria

specific language
“compiled” to some
byte code – some

times only test
descriptions for

manual execution

Online,

offline,

HIL

analysis;

Test execution

traces;

Back-tracing of

Req’s

HTML

Qtronic

EAST

TTworkbench

Presentation Overview

• Basic terminology

• Techniques

• TTCN-3, UTP, MiLEST, TPT

• Statistical testing

• D-MINT

T3UC 2009

• D-MINT

• Introduction + scope

• Industrial domains + case studies

• Evaluation processes

• Summary + outlook

Introduction

• Goal of the evaluation task: Measurable improvement through MBT
technologies

• Evaluate the effects of technologies and processes for performing model-based
testing in order to understand them, improve them and accelerate their introduction
into industrial practice

T3UC 2009

Evaluation Example

Process now Process after integration of D-MINT MBT

T3UC 2009

Technology
Assessment

Non-MBT vs MBT

Defining Metrics

EntitiesEntities AttributesAttributes RulesRules Numbers/SymbolsNumbers/Symbols

ProcessProcess efforteffort PD from start to endPD from start to end 10,53 h10,53 h

T3UC 2009

ProductProduct sizesize Number of Lines of CodeNumber of Lines of Code 700 LoC700 LoC

ResourceResource experienceexperience >10 projects>10 projects “high”“high”

Potential Measurement Problems

• Too many unnecessary data is collected

• Unnecessary effort

• Low data quality

• Hard to make conclusions

• Discouraging for people collecting/analyzing data

• Data is not analyzed in the right environment

• Context and influencing factors are not considered

T3UC 2009

• Wrong conclusions are drawn

• Standard measures are postulated that would be valid in
every possible environment (without adaptation)

• Important aspects cannot be analyzed because important
data is missing

• Solution: Goal-oriented Measurement using the GQM
Method

The Goal Question Metric Method

Goal

Q1 Q2 Q3 Q4

D
e

fi
n

it
io

n

In
te

rp
re

ta
tio

n

GOAL

QUESTION

Implicit

models

T3UC 2009

M1 M2 M3 ...

In
te

rp
re

ta
tio

n

Metric = Measure with defined measurement method and scale

METRIC

Template to Define GQM Goals

Dimension Description Examples

Object What is analyzed? Process, Product, Resource,

…

Purpose Why is the object

analyzed?

Characterize, Evaluate,

Compare, Improve, ...

Quality

Aspect

Which property of the

object is analyzed?

Reliability, Flexibility,

Maintainability, ...

T3UC 2009

Aspect object is analyzed? Maintainability, ...

Viewpoint From which viewpoint is

the quality aspect

analyzed?

Developer, Manager, Tester,

Project Manager, …

Context In which context is the

analysis conducted?

Organization, Project,

Application, ...

Example: GQM Goal, Questions and Metrics

Object: Review process

Purpose: Understand the review process

Quality Aspect: Review efficiency

Viewpoint: Inspector

Context: A review process of Company XY

What’s the efficiency of the

review process?
What influences the

efficiency?

Found defects per reviewer How experienced are What is the complexity of

T3UC 2009

per hour reviewers? the program?

average years of

experience in

reviews

lines of code Programming

language

found defects

review time in

hours

defects slipped

Example: GQM Abstraction Sheets

Object Purpose Quality Aspect Viewpoint Context

Inspection Understand Effectiveness Inspector X

Quality Focus
• M1: # defects detected
• M2: # defects slipped
• M3: M1 / (M1 + M2) %
• M4: # hours per detection

Variation Factors
• M5: Experience of personnel

(- , 0 , +)
• M6: Size of program

(- , 0 , +)
• M7: Language

T3UC 2009

• M7: Language
(L1, L2 , L3)

Baseline Hypotheses
• M3: 75%
• M4: 3 h

Impact of Variation Factors
• if (M5=‘+’) then

(M3=‘90%’)&(M4=‘2.5 h’)
• if (M7=‘L2’)&(M6=‘+’) then

(M3=‘60%’)&(M4=‘4 h’)

Development of Measurement Plans
for Case Studies

Presentation Overview

• Basic terminology

• Techniques

• TTCN-3, UTP, MiLEST, TPT, Statistical testing

• D-MINT

• Introduction + scope

T3UC 2009

• Introduction + scope

• Industrial domains + case studies

• Evaluation processes

• Summary + outlook

Summary + outlook

• MBT is evolving

• Several techniques and tools are available in multiple
domains

• Selected tools applied in industrial case studies

• TTCN-3 is used in several domains as binding link between

T3UC 2009

• TTCN-3 is used in several domains as binding link between
modelling and execution

• Demonstrator and experience package in preparation for end
of 2009

• 2nd MoTiP workshop at ECMDA, June 2009

www.d-mint.org

T3UC 2009

Thank you!

