Run-time test configuration for load testing

Run-time test configurations
for load testing

Gabor Ziegler,
Ericsson Hungary Ltd.

ERICSSON Z

TAKING YOU FORWARD

Contents

* Introduction
— What is TITANSIm
— Motivation for TITANSIm
— Functional description of the parts of TITANSIm
= CLL, Application Libraries and Control Logic
— Three different perspectives of TITANSIm:
= HW, SW, Run-time configurations
= Comparison of the possible test configurations
— “local scheduling” vs. “central scheduler PTC”

= Conclusions and questions

© Ericsson AB 2007 ETSI TUC 2007 2(25) Run-time test configuration for load testing 2007-05-15 ERICSSON ?

Ericsson AB 2007

2007-05-15

Run-time test configuration for load testing

Introduction

About TITANSIm

ERICSSON Z

TAKING YOU FORWARD

Introduction

= TITANSIm is aimed at performance testing
— With TTCN-3 as the specification language
— With Ericsson’s internal TTCN-3 Executor and Compiler
tool
» Performance testing needs highly optimized test suite
code
* Two contradicting requirements:
— A framework shall be general - generalization
— Optimization is task specific > specialization

© Ericsson AB 2007 ETSI TUC 2007 4 (25) Run-time test configuration for load testing 2007-05-15 ERICSSON ?

Ericsson AB 2007

2007-05-15

Run-time test configuration for load testing 2007-05-15

Motivation for TITANSImM

= TTCN-3 and TITAN is widely used for functional testing
throughout Ericsson

= TITANSIm aims to achieve cost savings via
— reuse of the function test code base
— reuse of testers’ competence
— reuse of existing, in-house tools

— reuse of the new performance test solution by different
projects through-out the company

©Ericsson AB 2007 ETSI TUC 2007 5(25) Run-time test configuration for load testing 2007-05-15 ERICSSON Z

Introduction

Functionalities and applications of TITANSIm

ERICSSON Z

TAKING YOU FORWARD

Ericsson AB 2007 3

Run-time test configuration for load testing

Functionality of TITANSIim CLL

= Run-time interaction with the test suite
— A dynamically configurable run-time GUl and ...
— ...Parameters
— ... Statistics

= Generic support for common programming tasks
— Memory management support: “resource” pools
— Scheduling support

= Alogging framework

= Generic support for distributed scheduling:
— EventQueue data type + support functions

= Concrete support for central scheduling
— Ready-made scheduler component for central scheduling
— Load balancing, regulated load, external execution control, traffic-
mixer and a graphical console for all these
= Other useful data types and algorithms:
— Linked lists (FreeBusyQueue), hash tables, binary search tree
(Red-Black trees)

© Ericsson AB 2007 ETSI TUC 2007 7(25) Run-time test configuration for load testing 2007-05-15 ERICSSON Z

Functionality of Application
Libraries and Control logic

* Application libraries: simulated entity specific tasks
— Protocol message handling
— Inbound message routing in case of multiple generator PTC
— Protocol specific TITANSim parameters and TITANSIm
statistics
— Building blocks and state-machine support for Control Logic

= Control logic: realization of particular traffic cases

© Ericsson AB 2007 ETSI TUC 2007 8(25) Run-time test configuration for load testing 2007-05-15 ERICSSON Z

Ericsson AB 2007

2007-05-15

Run-time test configuration for load testing 2007-05-15

Introduction

The 3 perspectives of TITANSImM

ERICSSON Z

TAKING YOU FORWARD

Views of a TTCN-3 load test library

* At least 3 perspectives have to be considered:
1. HW perspective: which hardware to use?
2. SW perspective: how to modularize your code?

3. Run-time perspective: what is the best run-time test-
configuration?

© Ericsson AB 2007 ETSI TUC 2007 10(25) Run-time test configuration for load testing 2007-05-15 ERICSSON Z

Ericsson AB 2007 5

Run-time test configuration for load testing

1. The HW perspective

= SWand HW are
separated °

* One SW - many HW

* To expand load
capacity only HW ===
units shall be added

© Ericsson AB 2007 ETSI TUC 2007 11(25)

Run-time test configuration for load testing 2007-05-15

ERICSSON 2

2. The SW perspective

* Three levels approach:

— “Core Load Library” (CLL)
= provides the generalization

— “Application specific framework libraries” (AppLibs)
= provides the "specialization”
= code provided in-cooperation with project experts,

relies on core library code
— “Control logic”: can provided by non-experts, as well

= builds on both application specific and core libraries
code

© Ericsson AB 2007 ETSI TUC 2007 12(25) Run-time test configuration for load testing 2007-05-15

ERICSSON 2

Ericsson AB 2007

2007-05-15

Run-time test configuration for load testing

3 Run-time configuration perspective

= Careful trade-off must be made between
— Efficiency
— Resulted code complexity

= Load testing means concurrency handling:
— Many(!) parallel traffic flows...
— ...over some shared resource pools!

= TTCN-3 has a special concurrency model
— PTC-s are run concurrently
— APTC is a“single CPU system”
= No concurrency support below PTC level by the language
— PTC-s are run isolated from each other
= no shared memory

= Our dilemma: on which level do we handle the concurrency?

© Ericsson AB 2007 ETSI TUC 2007 14 (25) Run-time test configuration for load testing 2007-05-15 ERICSSON ?

Alternatives for run time

configurations

= The “simple” approach is follow the “usual” TTCN-3
semantics
— Concurrency is to be handled on PTC-level
— Assingle PTC is responsible for a single transaction
* The “advanced” approach is to let a single PTC handle
multiple concurrent transaction
— Concurrency is to be handled below PTC-level
— Assingle PTC is responsible for multiple transactions

© Ericsson AB 2007 ETSI TUC 2007 15 (25) Run-time test configuration for load testing 2007-05-15 ERICSSON ?

Ericsson AB 2007

2007-05-15

Run-time test configuration for load testing

TITANSIm Run-time test
configurations

Central scheduling

ERICSSON Z

TAKING YOU FORWARD

Central -/

scheduling

e

. - B
- / N\ }
e / o HEALSS KL N
CPU monitoring \1’\~V AT I T TG / Host #j
‘_// B R - N //

\

| H oy H
i i XXX_CT | [R 227 CT |
I 2 - i ’
[3 l

A

ZZZ \WWW._Routing |-

V4

->' XXX_YYY_Routing

227 _Logger |1 "t*™

| i
E i [3 :
i Control logic Traffic gener:ator Control logic [
E and stack for components, and stack for !
: protocol XXX | : protocol ZZZ :
i [
| |
! i

WWW_PT

Load measurement

© Ericsson AB 2007 ETSI TUC 2007 17 (25) Run-time test configuration for load testing 2007-05-15 ERICSSON Z

Ericsson AB 2007

2007-05-15

Run-time test configuration for load testing

Central scheduling

— ltis the most user-friendly
— It requires no coding-paradigm change with respect to function
tests
— Suitable for ad-hoc load testing projects
— It can be used without an application library
= Can use ready-made scheduling functions that are totally
independent of load generator component-type

= Cons
— Less efficient
— Wrong scalability
= Each traffic initiation requires internal communication —
with a single central entity: extra overheads and delays
= Sharing data of a run-time database across traffic cases /
entities is difficult and inefficient

©Ericsson AB 2007 ETSI TUC 2007 18 (25) Run-time test configuration for load testing 2007-05-15 ERICSSON Z

TITANSIm Run-time test
configurations

Local (distributed) scheduling

ERICSSON Z

TAKING YOU FORWARD

Ericsson AB 2007

2007-05-15

Run-time test configuration for load testing 2007-05-15

Local scheduling | g - T

Traffic generator

: i .
Traffic generator _;l i co@pe\ngnls Z2ZZ 1 Gen_CT

components !

Control logic and

stack for protocol stack for protocol ZZZ

XXX

7

ﬁ XXX_YYY_Routing

-
|
|
|

i
|
i
; Control logic and
i
|
i
I

WWW_TP

© Ericsson AB 2007 ETSI TUC 2007 20(25) Run-time test configuration for load testing 2007-05-15 ERICSSON ?

Local (distributed) scheduling
= Pros
— ltis the most-efficient
— Less dependent on OS-scheduler
— Sharing data of a run-time database across traffic cases of the
same PTC can be easy and efficient
— Load generator PTC-s schedule on their own
= no internal communication overhead needed for load
generation
= They can run autonomously > scalability!
= Cons:
— It requires some sort of an application library: Explicit concurrency
handling shall be set up
— It requires coding-paradigm change with respect to FT: event-
based logic
— Writing and using reusable ready-made scheduling algorithms
requires dirty-tricks w.r.t. TTCN-3 language
© Ericsson AB 2007 ETSI TUC 2007 21(25) Run-time test configuration for load testing 2007-05-15 ERICSSON ?

Ericsson AB 2007 10

Run-time test configuration for load testing 2007-05-15

Thank you for your attention!
Questions?

-
ERICSSON =
TAKING YOU FOR

WARD

ERICSSON 2

TAKING YOU FORWARD

Ericsson AB 2007 11

