Directions in Model Based
Testing

R. M. Hierons

Brunel University, UK

http://people.brunel.ac.uk/~csstrmh

TTCN-3 User Conference

What is Model Based Testing?

At its simplest:

— We build a model

— We use this model to help in testing

A model represents what is to be tested.

It need not model the entire system and can
leave out many details (abstraction).

Models are often much simpler than
requirements.

TTCN-3 User Conference




What sorts of languages?

« Almost anything. Languages used include:

— Diagrammatic notations (e.g. statecharts, SDL,
sequence diagrams)

— Formal specification languages (Z, B, CASL,
LOTOS)

— High level code (e.g. python)
— Finite state machines

TTCN-3 User Conference

Why bother?

 Benefits include:
— Automating test generation
— Automating checking of results
— Validating requirements/design through building model
— Regression testing — change the model not the tests

» But
— There is an initial cost of building the model
— Building a model requires particular skills/training
— The model may be wrong

TTCN-3 User Conference




Topics

| will say a little about:

— Coverage and automated generation from state
machines

— Testability and transformations for state
machines

— Regression testing and ordering
adaptive/TTCN-3 test cases

» Context: black-box testing

TTCN-3 User Conference

Coverage and Test automation

TTCN-3 User Conference




Finite State Machines

* The behaviour of M in state s; is defined by the set
of input/output sequences from s;

TTCN-3 User Conference

Test coverage

» There are many popular notions of code
coverage such as: Statement, Branch,
MC/DC, LCSAJ, ...

* |t is natural to define measures of model
coverage.

* For FSMs we have:
— State coverage
— Transition coverage

TTCN-3 User Conference




Example (state)

» We could use input
sequence aaba

* Gives us no
confidence in the
transitions not
covered

TTCN-3 User Conference

Example (transition)

Here we can use
babaabbbaaba

We may not observe an
incorrect final state of a
transition.

Example: last transition in
above.

Instead, we can check the
final states of transitions.

TTCN-3 User Conference




Distinguishing Sequences

« A distinguishing sequence
IS an input sequence that )
leads to a different output ﬁ

sequence for every state.

* Here e.g. aba

TTCN-3 User Conference

Unique Input/Output Sequences

* A UIO for state s is defined
by an input sequence X
such that the output from s
in response to x is different
from the output from any
other state s’.

» UIO fors,: a/0 a/1

TTCN-3 User Conference




Characterizing sets

» A set W of input sequences such that:

— for every pair s, s’ of distinct states there is an
Input sequence in W that leads to different
output sequences from s and s’.

* Note:

— we can easily extend this to non-deterministic
models.

TTCN-3 User Conference

Relative merits

* If we have a distinguishing sequence then
we can use this for every state

» Every (minimal) FSM has a characterization
set but we may need to run multiple tests to
check a transition

 Practitioners report that many real FSMs
have (short) UlOs.

TTCN-3 User Conference




Test generation based on coverage

* In order to test a transition t it is sufficient to:
— Use a preamble to reach the start state of t
— Apply the input of t
— Check the final state of t (if required)
— Return to the initial state using a postamble/reset
» We can do this for every transition and automate
the process.

TTCN-3 User Conference

Example

» To test transition (s,,S,,a/0)
we could: 23 @ b/ )
— Apply a to reach s, ot | ug 4'
— Apply input a from the
transition
— Apply the distinguishing
sequence aba
— Then reset

TTCN-3 User Conference




Efficient test generation

» We could follow a transition test by another
transition test.

» We might produce one sequence to test all
of the transitions, benefits including:
— Fewer test inputs

— Longer test sequence so more likely to find
faults due to extra states.

TTCN-3 User Conference

A simple approach

» The following produces a single sequence:
— Start with the preamble and test for a transition
t,.
— Now choose another transition t, and move to
its start state and then add a test for t,.

— Repeat until we have included tests for every
transition.

 How do we choose a best order in which to
do this?

TTCN-3 User Conference




Representing a transition test

For transition (S;,S;,0/0)
using distinguishing
sequence aba we can add
an extra edge:

— From sg

— Input baba

- Tos,;

TTCN-3 User Conference

Solving the optimisation problem

* Our problem can be seen as:

— find a shortest sequence that contains every ‘extra’
edge.

» This is an instance of the (NP-hard) Rural
Postman Problem.

* There is an algorithm that is optimal if:
— There is a reset to be tested; or
— Every state has a self-loop

 This approach has been implemented in tools.

TTCN-3 User Conference

10



Overlap

» The Rural Postman approach produces
separate tests for the transitions and
connects these.

» However, the transition tests might overlap.
» There are algorithms that utilize this.

TTCN-3 User Conference

Resets

* We may have to include resets in a test sequence.

|t has been found that resets:

— Can be difficult to implement, possibly requiring
human involvement and reconfiguration of a system.

— Can make it less likely that faults due to additional
states will be found.

» However, we can find a test sequence that has
fewest resets — and can do so in polynomial time.

TTCN-3 User Conference

11



A problem with coverage

* No guarantees:

— Even if we have checked the final state of every
transition we may fail to detect faulty implementations.

e This is because:

— The methods to check states work in the model but
might not work in the implementation.

» The (limited) empirical evidence suggests that:

— These approaches are more effective than transition
coverage

— They often do not provide full fault coverage even if
there are no additional states.

TTCN-3 User Conference

Fault Models

e A fault model is a set F of models such that:

— The tester believes that the implementation behaves like
some (unknown) element of F.

Fault models allow us to reason about test
effectiveness:

— If the system under test passes a test suite T then it must
be equivalent to one of the members of F that passes T.

Similar to Test Hypotheses and mutation testing.

TTCN-3 User Conference

12



Test generation using fault models

e The aim Is;

— Produce a test suite T such that no faulty
member of F passes T.

o If our assumption is correct then:

— If the implementation passes T then it must be
correct

* S0, testing can show the absence of bugs
(relative to a fault model).

TTCN-3 User Conference

Fault models for FSMs

e The standard fault model is:

— The set F, of FSMs with the same input and
output alphabets as the specification/model M
and no more than m states, some predefined m.
* A test suite is a checking experiment if it
determines correctness relative to F,,.

A checking experiment is a checking
sequence if it contains only one sequence.

TTCN-3 User Conference

13



Generating a checking experiment

There are algorithms for producing a checking experiment
using a characterization set:

— Given fault model F., and FSM M with n states, these are
exponential in n-m.

There are polynomial time algorithms for producing a
checking sequence if:

— our FSM M has a known distinguishing sequence and m=n.
However:

— No known efficient algorithm for producing a shortest checking
sequence

— There is a polynomial algorithm for minimizing the number of
resets.

TTCN-3 User Conference

Papers

e These include:

e A.V.Aho, A.T. Dahbura, D. Lee, and M. U. Uyar, 1991, An
Optimization Technique for Protocol Conformance Test Generation
Based on UIO Sequences and Rural Chinese Postman Tours, IEEE
Trans. on Communications, 39, 11, pp. 1604-1615.

T. S. Chow, 1978, Testing Software Design Modeled by Finite-State
Machines. IEEE Trans. Software Engm 4 3, pp. 178-187.

R. M. Hierons and H. Ural, 2006, Optimizing the Length of Checking
Sequences, IEEE Trans. on Computers, 55 5, pp. 618-629.

R. M. Hierons, 2004, Using a minimal number of resets when testing
from a finite state machine, Information Processing Letters, 90 6, pp.
287-292.

M. Kapus-Kolar, 2007, Test as Collection of Evidence: An Integrated
Approach to Test Generation for Finite State Machines, The
Computer Journal, 50 3, pp. 315-331.

TTCN-3 User Conference

14



Future work

» Many potential areas:
— Domain specific fault models.
— Verifying fault models.
— Concurrent communicating FSMs.
— Adding time, ...

TTCN-3 User Conference

Testability Transformations for
Extended Finite State Machines

TTCN-3 User Conference

15



Extended finite state machines

* FSMs with:
— Memory (variables)
— Inputs with parameters
— Outputs with parameters
— Guards on transitions

 Languages such as SDL and Statecharts
have more features.

TTCN-3 User Conference

Testing from EFSMs

* One approach is:
— Choose a test criterion

— Find a set of paths through EFSM that satisfy the
criterion

— Generate an input sequence for each path.
* Note:

— FSM techniques produce sequences that test control
structure, we can add sequences for dataflow.

» There is a problem: we might choose infeasible
paths.

TTCN-3 User Conference

16



Testability transformations

» We could rewrite the EFSM so that:
— all paths are feasible; or
— there is a known set of feasible sufficient paths.

« Note: in general, this problem is
uncomputable.

TTCN-3 User Conference

Special case

» The problem can be solved when:
— All assignments and guards are linear

» Approach has been applied to real protocols
(Uyar and co-authors).

TTCN-3 User Conference




General case

» We can split states on the basis of:
— Transition guards (preconditions)
— Transition postconditions
* However:
— Analysis requires us to reason about predicates
— May lead to exponential increase in number of states.

e Framework has been described but little more.

TTCN-3 User Conference

Estimating feasibility

A transition can make a sequence infeasible
through its guard.

We might estimate how “difficult’ it is to
satisfy a guard.

Use the score for each transition to estimate
the “feasibility’ of a sequence.

This can direct us towards “better’
sequences.

TTCN-3 User Conference

18



Initial results

« Experiments with:
— a simple function that estimates “feasibility’
— two EFSMs
e we get:
— a correlation between estimate of feasibility and
actual feasibility.

TTCN-3 User Conference

Papers

* These include:

— M. A. Fecko, M. U. Uyar, A. Y. Duale, P. D. Amer,
2003, A Technique to Generate Feasible Tests for
Communications Systems with Multiple Timers,
IEEE/ACM Trans. on Networking, 11 5, pp. 796-809.

— A.Y. Duale and M. U. Uyar, 2004, A Method Enabling
Feasible Conformance Test Sequence Generation for
EFSM Models. IEEE Trans. on Computers, 53 5, pp.
614-627.

— R. M. Hierons, T.-H. Kim, and H. Ural, 2004, On The
Testability of SDL Specifications, Computer Networks,
445, pp. 681-700.

TTCN-3 User Conference

19



Future Work

e Many problems to be solved:
— Transformations for non-linear arithmetic
— Domain specific transformations

— Estimating feasibility using ‘more refined’
information

— Larger case studies regarding estimating
feasibility

TTCN-3 User Conference

Ordering to reduce the cost of
test application

TTCN-3 User Conference

20



Motivation

» There is a cost associated with running our
tests.

» This is a repeated cost due to regression
testing.

* If we can reduce this cost/time we can
speed up development and the fix/retest
cycle.

TTCN-3 User Conference

Finite Adaptive Test cases

« Can be thought of as a decision tree.

®

°S TN
o O@\
.

TTCN-3 User Conference

21



Formally defining (finite)
adaptive test cases

« We will initially consider adaptive test
cases that represented by finite trees.
 Such an adaptive test case is one of:
— null (apply no input)

— (x,f) for an input x and function f from outputs
to adaptive test cases.

0/\1

TTCN-3 User Conference ﬁ@

Context

o We will:
— Assume that the adaptive test cases are already given
— Assume that we reset between adaptive test cases

— Focus on minimising the cost of executing our adaptive
test cases

* Note: sometimes this is important, but not always!

» We wish to minimise the cost of testing without
reducing its inherent effectiveness.

TTCN-3 User Conference

22



Selective regression testing

» There are methods that choose a subset of a
regression test suite.

» Most based on maintaining coverage.

» Can lead to significant reduction in test
suite size but ... also a reduction in test
suite effectiveness.

TTCN-3 User Conference

Testing deterministic systems

TTCN-3 User Conference

23



An Initial observation

» Suppose we apply adaptive test case
observe trace x/y, reset and apply y again.

* Since the system under test is deterministic
we will again observe x/y.

— There is no need to apply an adaptive test case
more than once.

— If we have already observed trace x/y then we
do not have to apply y.

TTCN-3 User Conference

Test cases can relate

0/\1 0/\1

0/66@0 Q 3

» Here a/0,a/0 for the first adaptive test case
tells us that we will get response a/0 to the
second (applied after a reset).

TTCN-3 User Conference

24



So

We might have adaptive test cases y; and », such
that:

— There is some possible response to y that would
determine the response of the system under test to y,.

We denote this », <.
Clearly <is not symmetric.

Note: we (usually) can’t just eliminate y, in
advance.

TTCN-3 User Conference

Consequence

» The expected cost of testing depends upon
the order in which the adaptive test cases
are to be applied.

e Question: how can we find an order that
minimises the expected cost of testing?

TTCN-3 User Conference




Deciding <

* 5, <y ifand only if sav(y, ,» ) where:
sav(y,null) := true
sav(null,(x,f)) := false

sav((xy,f1), (X2, f2) 1= (xy=X;) A Fy.sav(fy(y).fo(y))
» Good news: this requires time that is linear
in the size of the adaptive test cases.

TTCN-3 User Conference

The relation < is not antisymmetric

TTCN-3 User Conference

26



The relation < Is not transitive

0 @\1 0 @\1 0 @\1
(@) (b) O (a) (b) (a)
e d é e d

TTCN-3 User Conference

The optimisation problem

» Given our set of adaptive test cases we want
to:

— Find an ordering that minimises the expected
cost of testing.

» We can rephrase this as:

— Find an ordering that maximises the expected
saving through not having to apply some of the
adaptive test cases.

TTCN-3 User Conference

27



The dependence digraph

» Given set 7'={y,,..., ,} of adaptive test
cases the dependence digraph G=(V,E) is:

TTCN-3 User Conference

Example

« What is the best ordering given the
following dependence digraph?

TTCN-3 User Conference

28



This order?

And this one?

29



One order

An alternative

30



Solving in terms of the
dependence digraph

* If we consider only G then the optimal order
IS:

— The order that minimises the number of edges
that ‘point backwards’

 Finding this is an instance of the Feedback
Arc Set (FAS) problem.

* Our problem is NP-hard.

TTCN-3 User Conference

Merging adaptive test cases

* These may be merged

TTCN-3 User Conference

31



Merging is not confluent
PON

* How can we find a ‘best’ way of merging?

TTCN-3 User Conference

Reducing the size of the problem

* We can:
— Merge adaptive test cases

— Separately consider classes of ‘independent’
adaptive test cases.

* Result:
— these two approaches do not “conflict’.

TTCN-3 User Conference

32



A special case: acyclic
dependence digraph

» Here we simply repeat the following until
all adaptive test cases have been chosen:
— Choose a vertex v; of G with no edge entering
it.
— Add ¥ to the end of the current order and delete
v; and the corresponding edges from G.
» We are finding an ordering based on a
DAG.

TTCN-3 User Conference

A simple algorithm

e \We can:

— Solve the FAS problem to find some feedback
arc set A.

- Let G’=(V,E\A)
— Find an order based on G’

TTCN-3 User Conference

33



Another factor: expected saving

» The potential saving varies.

 So does the likelihood of saving:

— If 3, <y, how likely is it that we will have to
use p, if we first use ,?

» We might estimate the expected saving
from using y, before 3,?

» A simple approach: give the dependence
digraph weighted edges.

TTCN-3 User Conference

A complication

There can be a relationship between the
edges of the dependence digraph.

NP

0/@1 0 O 0/®\1
O O O O
» Each is related to the other, but the savings
are mutually exclusive.

TTCN-3 User Conference

34



Infinite Adaptive Test Cases

TTCN-3 User Conference

Adaptive test case need not be
bounded

» We have assumed that our adaptive test
cases are given by finite trees.

» This does not allow us to include tests such
as: continue doing ‘x’ until *y’ happens and
then ...

* In order to represent these as trees we need
infinite trees.

TTCN-3 User Conference

35



Tests are FSMs

* An FSM representing an adaptive test case
in which we repeatedly apply a, looping
until we receive output 1.

alo
a/l

e There is one final state.

TTCN-3 User Conference

Languages

» Given an FSM M we let L(M) denote the
corresponding regular language.

* If we have FSMs M, and M, representing
adaptive test cases y; and y, respectively
then the response to y, can predict the
response to y, if and only if:

— There is a sequence in L(M,) that is a prefix of
a sequence in L(M,).

TTCN-3 User Conference




A decision procedure

» Given adaptive test cases y; and y, it is
sufficient to do the following:

— Define FSMs M, and M, representing » and »,
respectively in which every state of M, is a
final state.

— The response to y; can predict the response to y,
if and only if L(M,)NL(M,)=D.

» This is decidable in polynomial time.

TTCN-3 User Conference

Nondeterministic
Implementations

TTCN-3 User Conference

37



The Issue

» We can no longer predict the behaviour of
an adaptive test case based on a trace.

» Even if we apply the same adaptive test

case again, we can observe a different trace.

TTCN-3 User Conference

Repeating tests

» Suppose we apply an adaptive test case y
10 times and observe only two traces.

* Is this different from only seeing two traces
having applied it 1000 times?

TTCN-3 User Conference

38



Possible approaches

» We can produce results by either:
» Making a fairness assumption
» Assuming that all possible observations have at least
a given probability
» Making no assumptions

 The stronger the assumptions made:
» the greater the potential for reducing the cost of
testing

* the greater the potential for reducing test

effectiveness.
TTCN-3 User Conference

Fairness Assumptions

We assume that for some predetermined k, if we
apply an adaptive test case k times then we see all
possible responses.

If in testing we apply each adaptive test case k
times then we can apply analysis similar to that for
deterministic implementations.

We get results similar to the deterministic case.

TTCN-3 User Conference

39



Bounds on probabilities

» We could assume that:

— In every state s of the SUT and for input X, each
possible response of the SUT to x when in s has
probability at least p for some fixed/known p.

» We can then use results from statistical
sampling theory to provide a degree of
confidence in having observed all possible
traces in response to an adaptive test case.

TTCN-3 User Conference

How It works

« We apply each adaptive test case a
sufficient number of times for us to have the
required confidence that no other traces can
result from its application.

» We can then apply the function defined for
the fairness assumption.

TTCN-3 User Conference

40



Making no assumptions

» We have observed all possible responses of
the SUT to y if we have observed every
trace than any implementation can produce
in response to y.

 S0: the response to ycan be determined by a
set of adaptive test cases y,..., , if and
only if:

- L(y)= L(yy) V... UL(ry)

TTCN-3 User Conference

On-the-fly methods

» There are on-the-fly methods for
deterministic implementations

» These will do no worse than the preset
methods

» However, they require a more sophisticated
environment and additional processing
during the application of a test case.

TTCN-3 User Conference

41



Papers - ordering

The following are particularly relevant.

* R.M. Hierons and H. Ural, 2003, Concerning the ordering of adaptive
test sequences, FORTE.

* R.M. Hierons and H. Ural, 2007, Reducing the cost of applying
adaptive test cases, Computer Networks, 51 1, pp. 224-238.

R. M. Hierons, 2006, Applying adaptive test cases to nondeterministic
implementations, Information Processing Letters, 98 2, pp. 56-60.

» A. Petrenko and N. Yevtushenko, 2005, Conformance Tests as
Checking Experiments for Partial Nondeterministic FSM, FATES.

 Jourdan, G-V, Ural, H., and Zaguia, N., 2005, Minimizing the number
of inputs while applying adaptive tests, Information Processing
Letters, 94 4, pp. 165-169.

TTCN-3 User Conference

Future work

e Could include:

— Optimization using wider range of
sources of information.

— Test cases that are timed, distributed ...
— Empirical studies.

— On-the-fly with non-deterministic
Implementations.

~oZ0mhining with selective regression
testing?




Conclusions

MBT can lead to greater test automation

It can help us to reason about test
effectiveness.

However, it requires testers to produce
models

There are many open questions!

TTCN-3 User Conference

Questions?

TTCN-3 User Conference

43



