Test Generation towards TTCN-3 Paul Baker

Background

Model-Driven Development (MDD)

- Motorola's is a maturity MDD company
- Mature software company:
 - SEI CMM & CMMI levels range between 3-5

Standards Participation

- ITU-T/ETSI: MSC, SDL, TTCN-3 (GFT),
- OMG: UML 2.0 & UML 2.0 testing profile

Requirements-based Test Generation & Verification

MSC2000 and UML 2.0 test generation and verification

Typical Test Process

- Test scripts manually prepared
- Time consuming
- Incomplete
- Informal
- Opportunity to introduce defects

Auto Test Generation Process

Formal Test Models - Benefits

- Verification and validation simulation
- Higher level of abstraction
- Test model maintained only
- Model may form part or all of the requirements

Benefits of Auto Test Generation

Reduced Cost of Producing Test Suites

- Hand-written tests normally lead to 'representative' tests.
- Greater get off the ground cost to set up test model
- Reported reduction factors of up to 3x

Greater Test Coverage

Exhaustive nature of auto-testing tools

Improved Test Quality

 All possible scenarios are explored thereby generating unexpected or obscure tests

Easier Test Suite Maintenance

 Only the test model needs to be maintained, rather than the test suite

Some Test Generation Considerations

- Abstraction
- Complexity
 - Constraint mechanisms
 - Selection strategies
- Test strategies/coverage
- Data
 - Static and dynamic
 - Data Pools
- Model/test correctness
 - Valid tests
- Test configuration
- Traceability

TTCN-3 Landscape

Application of test generation techniques possible

Abstraction (1)

The user does not need to be concerned with specifying:

- test cases
- test configuration
- verdict handling
- exception handling
- test control

At this level of abstraction the user is concerned with:

- the behaviour definition of the system with its environment
- test coverage & strategies
- model correctness

Simple TTCN-3 Example

Example: Test Generation Process

Example: Model Correctness/Test Analysis

- Model semantics are represented in terms of traces
 - Semantic analysis = 26 traces
 - Test analysis = 5 test traces
- Model correctness identifies potential errors in the specification that can lead to invalid tests.

Example: TTCN-3 Test Generation

 Depending upon test generation directives a complete TTCN-3 suite can be generated.

In this case we:

- Trade off path coverage vs no of test cases => 2 test cases
- Only one test case may need to be executed => test control strategy
- Useful tests produced

Generate TTCN-3 code

- Conformance tests
- Concurrent test scripts
- Load tests

Abstraction (2)

At this level of abstraction the user is usually concerned with:

- test cases
- test configuration
- verdict handling
- exception handling
- test control
- specification correctness

However, the level of definition can vary. For example, it could be that only a partial test suite is defined containing a test configuration only. This means that test generation techniques can be applied for missing aspects.

Thank you

Almost lunch time...

- Questions?

