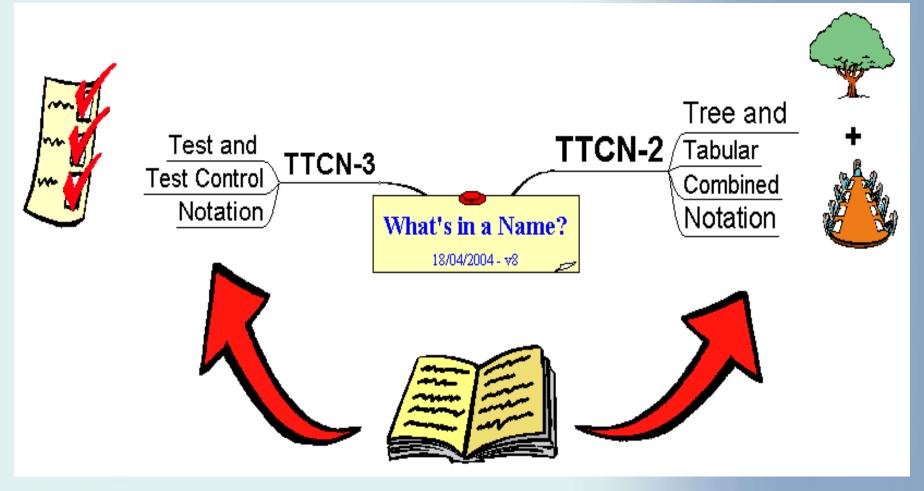
Comparing TTCN-3 and TTCN-2

STRATEGIC TEST SOLUTIONS

TTCN-3 User Conference

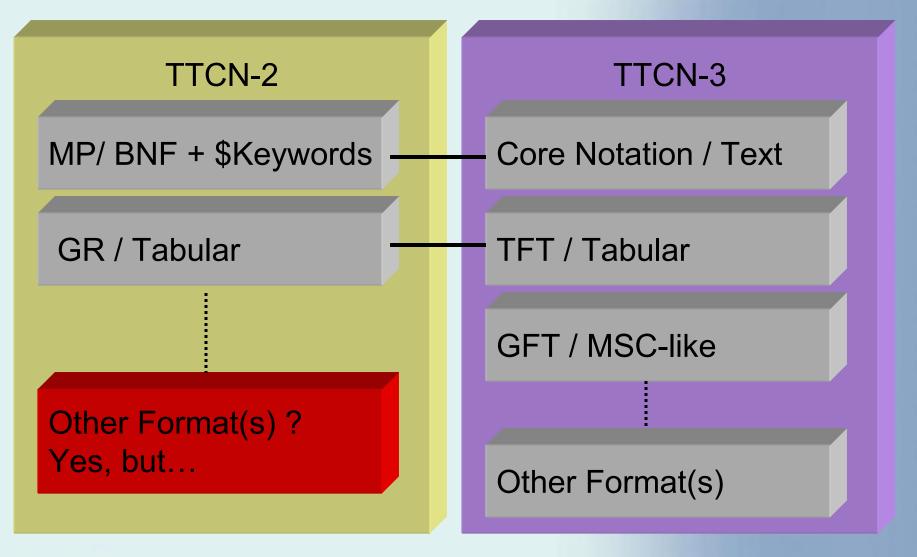
May 3rd-May 5th,2004


Sophia Antipolis

Introduction

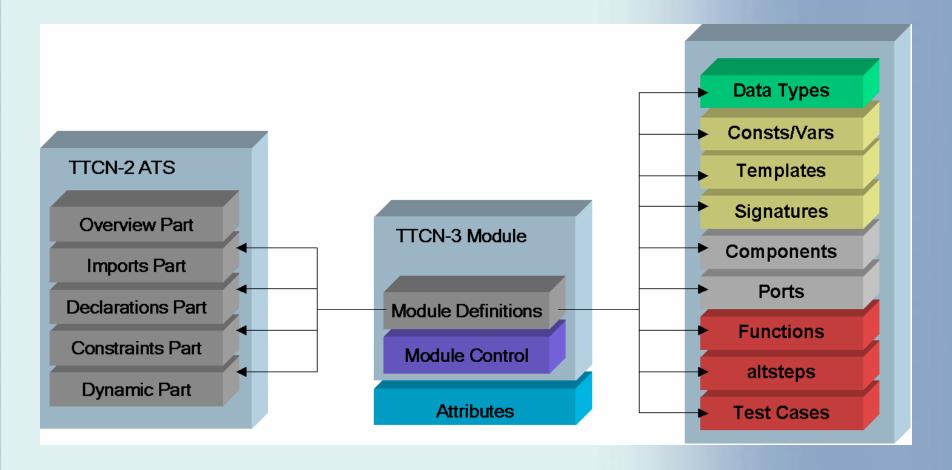
- Standards
- Presentation Formats
- Structure
- Types
- Comparing TTCN-3 and TTCN-2 syntax!
- Migrating to TTCN-3?
- Conclusions

What's in a Name?

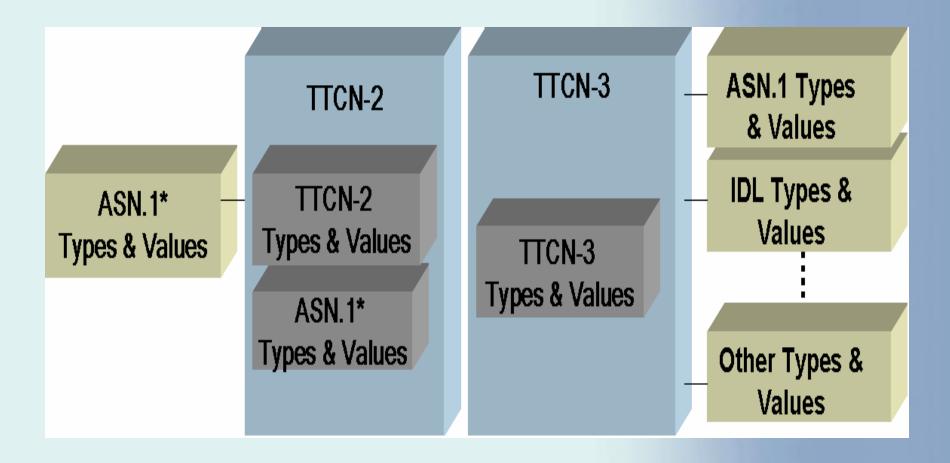


Standards

TTCN-2					
ETSI	ISO/ITU-T				
TR101 666	IS9646-3/ X.292	The Tree and Tabular Combined Notation (TTCN) Ed 2++			
		TTCN-3			
ETSI	ITU-T				
ES 201 873-1	Z.140	Part 1: TTCN-3 Core Language.			
ES 201 873-2	Z.141	Part 2: TTCN-3 Tabular Presentation Format (TFT)			
ES 201 873-3	Z.142	Part 3: TTCN-3 Graphical Presentation Format (GFT).			
TR 201 873-4	Z.143	Part 4: TTCN-3 Operational Semantics.			
ES 201 873-5	Z.144	Part 5: TTCN-3 Runtime Interface (TRI)			
ES 201 873-6	Z.145	Part 6: TTCN-3 Control Interface (TCI)			
TR101-874	-	TTCN-3: TTCN-2 to TTCN-3 Mapping (incomplete details)			



Presentation Formats



Structure

Types

Types

- TTCN-2 & TTCN-3 are weakly typed languages
- TTCN-3 provides extensive type compatibility rules
- TTCN-3 adds several new types
 - For convenience
 - For better harmonization with ASN.1

Basic Types

Class of type	TTCN-3	TTCN-2
Simple basic types	integer	INTEGER
	float	-
	boolean	BOOLEAN
	objid	OBJECTID
	verdicttype	R_type
Basic string types	bitstring	BITSTRING
	hexstring	HEXSTRING
	octetstring	OCTETSTRING
	charstring	-
	universal charstring	-
Structured types	d types record	
	record of	-
	set	-
	set of	-
	enumerated	-
	union	PDU (subset)
Special data types	anytype	-
Special configuration types	address	-
	port	PCO, CP
	component	(generic)
Special default types	default	-

New TTCN-3 Types

- address—provides access to SUT internals.
- port—replaces TTCN-2 PCO and CP types
- component— adds the concept of component types
- record—replaces TTCN-2 structured type, ASN.1 type, and tabular and ASN.1 ASP, PDU and CM types (8 types in all) (no implicit fields)
- "Arrays" Although strictly not a type, single and multi-dimensional support for arrays was added

New Types for use with ASN.1

• Adds:

- char, charstring, universal charstring,
- record [of] (SEQUENCE [OF])
- set [of] (SET [OF])
- union (CHOICE)
- float (REAL)
- enumerated (ENUMERATED)

Parameterization

TTCN-2		TTCN-3			
Element Pars		Element	Equiv	Permitted	
Test Suite Oper	ations				
Predefined TSO	CBV	function →predefined	in	in	
TSOP	CBV	function → user defined	in	in, out, inout	
TSO	CBV	external function	in	in, out, inout	
Constraint	CBV	template	in	in	
Encoding variation	CBV	with { variant "variant rule" }	in	not possible	
Invalid encoding	CBV	function	in	in, out, inout	
Global Test Steps	CBR ¹	altstep	in ^a ,inout	in, out, inout	
Local Test Steps²	CBR ³	altstep	in ^b , inout	in, out, inout	
Default Step	CBR	default altstep (used in activate only)	in ⁴	in, out, inout ⁵	

¹ The call by value (CBV) mechanism is used for test steps (global or local) with formal parameters when they are referenced in a CREATE construct;

Defaults must be replaced with direct altstep references to provide equivalency.

TTCN-3 does not support local altsteps. This would be a useful addition;

TTCN-3 modules and test cases can be parameterised;

TTCN-2 uses CBR and TTCN-3 uses CBV;

Scope

- TTCN-2: Two levels of scope
 - Global for TSVs*, TSCs, TSPs, TCVs*, and
 - Local for variables in TSOPs & IFEOD
- TTCN-3: Seven levels of scope
 - Module
 - Control Part
 - Components
 - Functions
 - Altsteps
 - Test cases and
 - Blocks of statements

TSV: Test Suite Variable TCV: Test Case Variable

TSC: Test Suite Constant

TSP: Test Suite Parameter

TSOP: Test Suite Operation Procedure IFEOD:Invalid Field Encoding Operation Description

- * Exceptions not visible in:
 - constraints,
 - •TSOPs,
 - •IFEODs

Change = Big Returns?

- Modernizing: New look & feel
 - Lower case reserved words → improved readability
 - Object Oriented-like syntax
 - Clear separation of TTCN-3 & ASN.1
 - Removing cryptic & OSI centric notation
 - Eliminating duplicate information
 - Left to right order of evaluation
 - Simpler verdict assignment rules

Timers

Timer Name	Duration	Unit ¹	Comment
	1	100 G	Duration: intagar (antional)
MyTimer	1	ms	Duration: integer (optional)
			Unit: no no no mo o min
			Unit: ps, ns, us, ms, s, min (mandatory).

Time units include: *ps* (picosecond), *ns* (nanosecond), *us* (microsecond), *ms* (millisecond), *s* (second) and *min* (minute).

timer myTimer := 0.001; // TTCN-3 timer 1ms

TTCN-3 timers always have a base unit of second

Send & Receive

TTCN-2 Send

Nr	L	Behaviour Description	Cref	Δ	С
1		p ! pduX [a = 5] (pduX.x := 4)START T1	c X	(P)	

TTCN-3 Send

 $[\underline{a} == 5]$ p.send(modifies $\{\underline{c} \ X := x \ 4\}$) $\{ T1.start; \underline{setverdict}(pass); \}$

TTCN-2 Receive

Nr	L	Behaviour Description	Cref	٧	C
1		p ? pduX [a =5] (x:= 4) CANCEL T1	c X	(P)	

TTCN-3 Receive

[a == 5] p.receive (c_X){ x := 4; T1.stop; setverdict(pass); }

Verdicts

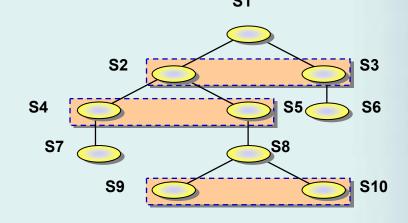
Current value of	New verdict assignment value				
Verdict	pass	inconc	fail	none	
none	pass	inconc	fail	none	
pass	pass	inconc	fail	pass	
inconc	inconc	inconc	fail	inconc	
fail	fail	fail	fail	fail	

TTCN-3 adopts the preliminary verdicts as used in TTCN-2.

TTCN-3 adds the 'error' verdict which can only be set by the test System (caused by a test case execution). Cannot be set by use of setverdict();

NOTE: TTCN-3 does not provide the global R variable as in TTCN-2. Care must be taken if this is used in a test suite.

Sequential Behaviour


TTCN-2

S1 S2 S3 S4 S5 S6 TTCN-2 uses indentation

TTCN-3

Alternative Behaviour

TTCN-2

TTCN-3

```
S1
               S2&S3, S4&S5, and
  S2
               S9&S10 are alternatives
    S4
      S7
               S1,S2,S4,S7.
    S5
               S1,S2,S5,S8,S9.
      S8
        S9
               $1,$2,$5,$8,$10. and
         S10
               S1,S3,S6. are the possible
               event sequences.
   S3
    S6
```

```
S1; alt {
    [] S2;alt {
        [] S4; S7;

        [] S5; S8; alt {
        [] S9;
        [] S10;
        }
        [] S3; S6;
    }
```


Why Migrate to TTCN-3?

- TTCN-3 is superior to TTCN-2
- Number of tool vendors to choose from increasing
- Good tools exist for:
 - Development
 - Conversion from TTCN-2 to TTCN-3

Why Migrate to TTCN-3?

• TTCN-3's new look&feel and Java/C++ like syntax is expected to lower developers & testers resistance to its use.

• Which:

- Should help break down the usually disjoint product development/test process
- Should encourage re-use, sharing of tests, and improve the team's overall product knowledge
- Should improve team flexibility (developers/testers may be interchanged)
- Should lead to shorter test suite development time

Conclusions

- TTCN-3 is a superior solution to TTCN-2
- TTCN-2 will continue to exist for a few years
- Migration from TTCN-2 to TTCN-3 will be gradual
- To ensure TTCN-3's evolution and continued success tool vendors must:
 - Provide input to, and offer continued support to standards bodies,
 - Provide affordable, innovative, & timely solutions which meet user needs,
 - Offer user friendly, simple to use, & high quality tools,
 - Promote use of TTCN-3 by:
 - Keeping their tools aligned to the evolving standards.
 - Offering professional training and quality support.
- TTCN-3 provides organizations with the ability to design and architect well engineered test systems!

