

Testing Wireless over Wire with TTCN-3

Milan Zoric, ETSI
Sebastian Müller, FSCOM
Scott Moseley, Farbum Scotus

1st TTCN-3 User Conference, Sophia Antipolis, May 2004

Wireless over wire

Tester

Testing over the network

- Conformance test specifications since early 90's
 - > GSM, DECT, VB5, HiperLAN2, VoIP, ISDN, INAP, TETRA, IP Cablecom, 3GPP
 - > Moved from strict regulatory testing, with expensive and cumbersome 3rd party testing regimes to ...
 - > ... lean test suites focusing on conformance for interoperability that are "extremely good value for money"
 - > Strong demands for technologies that have earlier used other approaches (IP testing)
- Now also producing interoperability test specifications
 - > SIP <-> H.323 interworking
- ETSI has unique resources related to testing
 - ➤ TC MTS, The PTCC, The PlugtestsTM Service

First challenge: start with multiple unstable components

Product (SUT)

Base Standard ETS

Lower
layers
including
radio

ATS (TTCN)

More challenges

- The radio based test tool
 - May not be available at all
 - Commercial reasons
 - May become available late
 - Commercial and technical reasons
 - May be excessively expensive
 - Real costs combined with limited number of potential vendors
- Test suite validation
 - the process of assuring that the ATS not only passes through the compiler but also executes successfully
 - More expensive
 - done in the context of radio based test tool development
 - Possibly available later than desired
 - for in-house prototype debugging
 - for providing feedback and making corrections to a stadard
- Before testing against conformance test tools or other implementations, each company individually spends a lot on in-house testing/debugging schemes

The goals

- Make test suite validation faster and cheaper
- ☐ Enable sharing of efforts (costs) in protocol conformance testing and company in-house testing/debugging
- Make product testing/certification available to all technologies with alternative solutions
 - Cheaper and faster development of radio based protocol test tools, or
 - Combination of some level of protocol conformance testing and interop events

The implementation goals

- **Definition of a test tool implementation framework**
 - > Abstract
 - Fits with ISO 9646 methodology and TTCN-3 language
 - > Generic
 - Reusable for different protocols
 - Reusable for different transport mechanisms, including full radio based transport
 - > Tool independent
 - Using standardized interfaces
 - > Fxtensible
 - For modifications of the test suite and the implementation
- ☐ First virtual tester implementation
 - > Modular
 - > Easy to understand
 - > Demonstrate feasibility of the approach
 - Maintainable

Protocol Layer Tester (PLT)

Transport mechanism

Generic wire based test tool

PC

- ☐ Generic approach to message snapshot content
- Generic definition of the Application Programming Interface

Specific wire based test tool

- ☐ HA specific message snapshot content
- ☐ HA specific Application Programming Interface

Generic API specification

<<interface>>

org::etsi::ttcn:udp::DatagramSocketAPI

close(): void

connection(in remote: SocketAddress): boolean

disconnect(): void isConnected(): boolean

receive(in packet: DatagramPacket, in timeout: int): boolean

send(in packet: DatagramPacket): boolean

<<interface>>

org::etsi::ttcn:udp::DatagramPacket

getData(): byte[] getLength(): int getOffset(): int

getSocketAdress(): SocketAddress

setData(in buf: byte[], in offset: int, in length: int): void

setData(in buf: byte[]): void setLength(in length: int): void

setSocketAddress(in address: SocketAddress): void

<<interface>> org::etsi::ttcn:udp::SocketAddress

getHostName() getPort() setBzHostName() setPort()

Specific API part

<<interface>> org::etsi::ttcn::udp::DatagramPacket

<<interface>> org::etsi::ttcn::HA::HADatagramPacket

setFrameCounter(in int value):void getFrameCounter():int setControlZoneValid(in boolean value):void getControlZoneValid():boolean setSidValid(in boolean value):void getSidValid():boolean

setBody(in byte[] value):void getBody():byte[]

Testing one protocol entity

Testing multiple protocol entities

First use of the test system prototype

- □ Revealed
 - > Errors in prototype implementation
 - > Ambiguity in specification
 - > Defects in Abstract Test Specification
- ☐ The above are assumptions to be clarified and corrected between standard writers, implementers and test specification developers

TTCN-3 Execution Environment

Test System User

TRI-

- ☐ Implementation of TTCN-3 send()
 - > TE calls triSend() in SA
 - > Sending of encoded PDU
- **☐** Building of API Message
 - Depends on the type of PDU
 - Contains various information in the header
 - MAC ID
 - Long vs. Short Channel PDU
 - Up-/Downlink
- **Sending to System Under Test**

Construction of Datagrams

- ☐ Implementation of TTCN-3 send()
 - > TE calls triSend() in SA
 - > Sending of encoded PDU
- ☐ Using the lower layer SAP
 - > Introduces framing
 - > Power level, frequency etc.
 - > Sends it out using radio
- ☐ Sending to System Under Test

ETSI

Test validation against the SDL model

Results

- ☐ Test system prototype
 - > Using current version of the test suite
 - > Using only standardized interfaces
 - > Using the generic test implementation framework
- □ Easy adaptation to test devices, using other lower layers
- ☐ Implementation will be made available to the indust
 - Abstract Test Suite
 - Validated Executable Test Suite running in the Test System over UDP/IP
 - > Test Management for execution
 - **>** Documentation

New challenges

- □ Timing
 - > Requirements on timing of all testing related activities may be different and rather challenging
- □ There may be implications on how test specifications are written
- Implementation issues that affect prototype testing/debugging
 - > Software/hardware division in relation to API positioning

Acknowledgements

- □ EP BRAN (Broadband Radio Access Networks) for their support
- ☐ EC for funding part of the work
- Member companies that provided protocol stack executables to be tested
- ☐ Testing_tech for providing the TTCN-2/TTCN-3 converter, TTCN-3 compiler and run time environment
- □ Kaiserslautern University for providing apiGEN software and extensive support
 - > Prof. Dr. Reinhard Gotzhein, Marco Brandt
- ☐ Theofanis Vassiliou-Gioles for his contribution to this work
- ☐ Protocol test specifications developed by
 - > Gérard Daugan, Scott Moseley, Jean Claude Wattelet