Practical Use of TTCN-3 for Text Based protocol Testing

4th of May 2004

Stephan Schulz, Ph.D.

Senior Research Engineer Mobile Networks Laboratory Nokia Research Center, Helsinki

Overview

- Background on (Testing of) Text-Based Protocols
- Writing Test Cases for Text-Based Protocols with T3
- T3 Test Platform Design for Text-Based Protocols
 - ⇒ Derivation of TTCN-3 types for text message
 - → Implementation of a Generic Text-based Codec System
- Conclusions
- References

Background on Text-Based Protocols

- Message on the line follows textual encoding
- Originated from internet community
 - "IP convergence" is slowly but surely bringing them into the telecom world, e.g., SIP
- Designed to be humanly understandable
 - Potentially "huge" message size
- General message structure:
 - Collection of text headers/descriptors followed by some payload (which may be of binary format)
- Examples:
 - ⇒ SIP, SDP, HTTP, RTSP, MEGACO ABNF, ... telnet, ftp, smtp

A SIP Message Example

REGISTER sip:antipolis.net SIP/2.0

Via: SIP/2.0/UDP 172.23.243.90:5060

;branch=z9hG4bKA65E34CD46334B958A7E559C9C011230

From: Alice in Chains <sip:alice@antipolis.net>;tag=0g4E_UWw-J

To: Alice in Chains <sip:alice@antipolis.net>

Contact: "Alice in Chains" <sip:alice@172.23.243.90:5060>

Call-ID: 014B8E49AD6A40B58A94A4EE6A213BA6@antipolis.net

CSeq: 44 REGISTER

Expires: 500

Max-Forwards: 70

User-Agent: X-Lite build 1079

Content-Length: 0

Reality of Text-Based Protocols

- Myth:
 "I can specify/check text messages easily by hand"
- Possibility of white space
 - ⇒ Not well defined across different protocols
 - Doesn't affect information content (only appearance)
- Multiple ways to encode the same information
 - Negatively affects message readability
 - ⇒ Examples:
 - Multiple header occurrence
 - Long versus compact form
- Handling of text messages in testing is a challenge!

A "not so nice" version of the SIP Message Example

```
REGISTER sip:antipolis.net SIP/2.0
          f: Alice in Chains <sip:alice@antipolis.net>; tag=0g4E_UWw-J
          max-FORWARDS: 70
          t: Alice in Chains
short
          <sip:alice@antipolis.net>
forms
          m: "Alice in Chains" <sip:alice@172.23.243.90:5060>
          i: 014B8E49AD6A40B58A94A4EE6A213BA6@antipolis.net
white
          cseq: 44
space
          REGISTER
           EXpiRes: 500
          Via: SIP / 2.0 /UDP
+ other
             172.23.243.90:5060
funnies
          branch=z9hG4bKA65E34CD46334B958A7E559C9C011230
          User-Agent: X-Lite
                                                           build 1079
          I: 0
```


Text-Based Protocol <u>Testing</u>

- Different testing philosophy at IETF
 - Adherence to a specification is "verified" once two implementations interoperate (= no testing against spec)
 - Concrete need for testing in implementation certification!
- State of text-based protocol conformance testing
 - **⇒** IETF
 - "torture tests" (=send messages with funny encoding)
 - Python/Perl scripts
 - ⇒ FTSI
 - "trial" TTCN-3 SIP test suite exists
 - Still no conformance test specifications for any text-based protocol required by any standardization body today

TTCN-3 for Text-Based Protocol Testing

- The hope to make conformance testing for (IETF) text-based protocols finally happen!
- Core notation is key
 - Similar feel as programming language
- Important new TTCN language features
 - Regular expressions for sophisticated checking of textual values (not possible with TTCN-2!)

```
template charstring any_lcw := pattern "[a-z]#(1,)";
```

New string handling operations drastically simplify working with textual values

```
var charstring v_str := "TTCN-" & int2str(3);
```

Encoding attributes down to level of TTCN-3 type fields

Test Systems for Text-Based Protocol Testing

Now appropriate support in TTCN-3 language but ...

- ... real challenge is design of good test platforms for text-based protocols!
 - Lets test case implementers focus on the information contained in protocol messages
 - Leaves syntax checking and assembly of text messages to test platform – automates it
 - Shields test case writers from the quirks of text-based protocols (e.g., white space, short forms, etc)

TTCN-3 Test Systems for Text-Based Protocols

About TTCN-3 code and (text) codecs

- Codec implementation is closely coupled to the representation of protocol messages in TTCN-3
 - ⇒ Generally one or more modules define a (abstract) structure of every protocol message using TTCN-3 types
 - Codecs (C/Java code) assemble real protocol message to be sent based on this structuring and vice versa
 - ... therefore choice in TTCN-3 message structuring *drives* a codec/testing platform implementation!
- Text protocol standards only specify message encoding – not their abstract definition!
- Strong need for such a definition to really unleash the power of TTCN-3!

So the "real" Challenge: Text Messages in TTCN-3

One approach to extract an abstract representation for text messages!

Benefits:

- More readable, robust, consistent and high quality test suite implementations
- Creates a textual encoding scheme
- Enables creation of one single codec implementation for many text-based protocols
- Reduces test system development time for new or variations of text protocols
- [Possibility to change encoding of message content]
- Proposal for ABNF defined textual encoding exists
 - Nokia TestCom 2004 paper (see References)

Text Codec Implementations

- Current approaches
 - Open source parsers
 - Not independent of protocol
 - Quality of encoding error report?
 - Generated parsers (yacc etc)
 - Poor quality of codec error report: "ok" or "not ok"
 - Needs more extra work than may be expected ...
 - Not really designed for <u>testing!</u>
- A generic text codec implementation
 - ⇒ Relies on a generic TTCN-3 type derivation approach
 - Protocol independent
 - Designed for testing (e.g., useful error reports)

A Generic Text Codec Implementation

- Preprocessor normalizes incoming messages
- En/decoder driven by encoding information specified as part of TTCN-3 message types
- Technology successfully applied in Nokia product testing of SIP, SDP, MEGACO ABNF, etc

Conclusions

- Text-based protocol conformance testing finally possible with TTCN-3 and a reality!
 - ⇒ New language features have proven to simplify TTCN code
 - Also key factor: easy-to-learn TTCN-3 core notation
- Real challenge however lies in representation of text message content with TTCN-3 types
 - Proposal for TTCN-3 type derivation from ABNF exists
 - Single generic text codec implementation possible
- TTCN-3 community is ready but (currently) requests from standardization organizations are lagging
 - Expected breakthrough with 3GPP Rel5 testing
 - Now possibility to positively influence IETF!

References

- TTCN-3
 - ⇒ ETSI ES 201 873-1: The TTCN-3 Core Language
 - ⇒ ETSI ES 201 873-5: The TTCN-3 Runtime Interface
 - ⇒ ETSI ES 201 873-6: The TTCN-3 Control Interface
- Test System Design for Text-Based Protocols
 - S.Schulz, "Derivation of Abstract Protocol Type Definitions for the Conformance Testing of Text-Based Protocols", Proceedings of TestCom Conference, 177-92, Oxford, UK, 2004.

