Using TTCN-3 in an Automotive Context

André Baresel, 04.05.2004 RIC/SM (Research on Software Technology Methods and Tools)

Overview

- System Under Test: Telematics Application
- Specifying Functional Behaviour
- Test Case Design & Execution using TTCN-3
- Test System: Hardware and Software
- Test Requirements (Telematics Department)
- Other Application Fields at DC
- Future Extensions

System Under Test Architecture of Telematics Application

- Telematics Applications
 - Audio (CD / Radio)
 - Telephone
 - Navigation
 - Video
 - Speech Recognition
 - Short Messaging (SMS)
 - User Interface for Body Electronic

System Under Test Functional Details

- Network of embedded devices
- Bus system: MOST, CAN

- Applications implemented by many devices
- Logical separation of behaviour into FunctionBlocks

Show Tuning Info

Start Playing CD

Notify CD Position

Press Button,

Specifying Functional Behaviour A Telematics Application

Audio Application

- Three devices interacting
 - * CD Changer
 - * Audio Gateway
 - * Head Unit

Manage Audio Channels

Fade Volume

Example:

"Switch from Radio to CD"

- 15 messages in this use case
- interactions with other events like mobile phone

Test Case Design & Execution Constraints

- Specification-based tests 250+ complex MSCs for the next car model
- Each MSC describes a single scenario
- Parallelism described by textual documentation

Test Case Design & Execution Using TTCN-3

Test System Hardware Environment

"Debug the message flow, and find the incorrectly behaving control unit..."

Test Setup Early Integration

 Message Tracing Monitor (Filter & Recording)
Automatic Validation

Test System Software Architecture

Test Requirements DC Telematics Departments

- Abstract definition of the tests at the same level as the specification (graphically)
- Graphical tracing of test results Comparing of specification and test result has to be simple to save time and effort
- Re-Use of test scripts across integration phases and test types (functional vs. robustness tests)
- Standardized test middleware for co-operation with component suppliers to automate acceptance test

Application Fields In the Automotive Context

Characterisation

- embedded means hard to debug
- many components interact
- over different networks (most, can)
- overlapping functionality

Real Time Environments

- motor controller (petrol & diesel engine)
- electronic gear shifting, car body control (pneumatic shock absorption)
- environmental electronics (e.g. window heating, air conditioning unit)

Future Extensions

- Continuous signals
 - wait for signal level X
 - send a signal ramp with speed Y
 - One solution: state based modelling of tests, continuous behaviour defined for each state
- Fully Qualified Test Specification
 - Focus on test case design rather than on scripting
 - Put the test documents and test code together
 - Not only single test cases
 - Recording of Test Cases ?